Type 1 diabetes: Can insulin-producing cells be regenerated?

June 27, 2013
Type 1 diabetes: Can insulin-producing cells be regenerated?
Left: The pancreas of control mice (non-diabetic) is shown. Right: The pancreas of transgenic mice demonstrates massive regeneration of insulin-producing β cells (colored pink) following chemical induction of diabetes. Credit: © Patrick Collombat / Inserm

(Medical Xpress)—Patrick Collombat, Inserm Research Director and head of the Avenir team at the Institut de Biologie Valrose in Nice, has published new results concerning Type I diabetes. Researchers show that, in mice, the pancreas contains cells capable of being converted into insulin-producing β cells, something that can be done at any age. They also demonstrate that all pancreatic β cells can be regenerated several times and that chemically-induced diabetes in mice can thus be "treated" repeatedly. The challenge for the researchers is now to show that these procedures can be applied to humans.

Their work is published online in the Developmental Cell journal dated 27 June 2013.

Type I diabetes, characterised by the selective loss of pancreatic, insulin-producing ? cells, is a condition that affects more than 30 million people worldwide. Despite current treatments, type I have a that is reduced by five to eight years. It is in this context that the Avenir "Diabetes Genetics" team have been working to develop new approaches designed to regenerate these cells.

In 2009, researchers at the Valrose Biology Institute (Inserm/University of Nice Sophia Antipolis) managed to convert -producing ? cells into ? cells in young mice. Currently, thanks to the use of , they have shown the mechanisms that result in this change of cell identity. These are the very cells of the pancreatic ducts that can be mobilised and literally transformed into ?, then into ? cells, a process that works at any age. The transformation is obtained through the forced activation of the Pax 4 gene in the ? cells of the . The resulting cascade of events causes the manufacture of brand-new ? cells, thanks to a revival of the development genes. Throughout this process the ? cells are regenerated and gradually adopt the profile of ? cells. This means that the pancreas has a virtually inexhaustible source of cells capable of replacing the ? cells.

This video is not supported by your browser at this time.

By artificially creating type I diabetes in mice, "we also showed that all the pancreatic ? cells could be regenerated at least three times using this mechanism. Diabetes, induced in this way in the mouse, can be literally "treated" multiple times thanks to the new stock of functional, insulin-producing ? cells" explains Patrick Collombat, INSERM research director and principal author of the study.

These promising results obtained in the mouse suggest that the pancreas contains cells that can regenerate several times those ? lost in type I diabetics.

"We are currently working on the possibility of inducing such regeneration by using pharmacological molecules. Thanks to this new data, we shall be concentrating in future years on determining whether these processes can also be made to work in humans, a real challenge in offering better treatments for type I diabetes", he concludes.

Explore further: Recovering 'bodyguard' cells in pancreas may restore insulin production in diabetics

More information: www.cell.com/developmental-cell/abstract/S1534-5807%2813%2900312-2

Related Stories

Reprogramming cells to fight diabetes

February 22, 2013

For years researchers have been searching for a way to treat diabetics by reactivating their insulin-producing beta cells, with limited success. The "reprogramming" of related alpha cells into beta cells may one day offer ...

No rebirth for insulin secreting pancreatic beta cells

April 24, 2013

Pancreatic beta cells store and release insulin, the hormone responsible for stimulating cells to convert glucose to energy. The number of beta cells in the pancreas increases in response to greater demand for insulin or ...

Adult stem cells could hold key to curing Type 1 diabetes

May 29, 2013

Millions of people with type 1 diabetes depend on daily insulin injections to survive. They would die without the shots because their immune system attacks the very insulin-producing cells it was designed to protect. Now, ...

Recommended for you

Engineered hot fat implants reduce weight gain in mice

August 20, 2015

Scientists at the University of California, Berkeley, have developed a novel way to engineer the growth and expansion of energy-burning "good" fat, and then found that this fat helped reduce weight gain and lower blood glucose ...

Promising progress for new treatment of type 1 diabetes

July 30, 2015

New research from Uppsala University shows promising progress in the use of anti-inflammatory cytokine for treatment of type 1 diabetes. The study, published in the open access journal Scientific Reports, reveals that administration ...

Bacteria may cause type 2 diabetes

June 1, 2015

Bacteria and viruses have an obvious role in causing infectious diseases, but microbes have also been identified as the surprising cause of other illnesses, including cervical cancer (Human papilloma virus) and stomach ulcers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.