Fate of the heart: Researchers track cellular events leading to cardiac regeneration

June 19, 2013
Time-lapse imaging of the same injured zebrafish heart shows that genetically-labeled atrial cardiomyocytes (green channel) can change into ventricular cardiomyocytes (red channel) to regenerate the injured cardiac ventricle. A – atrium, V – ventricle, hpi – hours post-injury Credit: Ruilin Zhang

In a study published in the June 19 online edition of the journal Nature, a scientific team led by researchers from the University of California, San Diego School of Medicine visually monitored the dynamic cellular events that take place when cardiac regeneration occurs in zebrafish after cardiac ventricular injury. Their findings provide evidence that various cell lines in the heart are more plastic, or capable of transformation into new cell types, than previously thought.

More importantly, the research reveals a novel potential source of cells for regenerating damaged heart muscle, according to principal investigator Neil Chi, MD, PhD, assistant professor of medicine in the Division of Cardiology and member of the Institute of Genomic Medicine at UC San Diego.

remains the leading cause of death in the developed world, largely due to the inability of mammalian hearts to regenerate new cells and repair themselves. However, lower vertebrates such as zebrafish are capable of generating new ventricular , or cardiomyocytes, that can replace the heart muscle lost through ischemia-induced infarcts – more commonly known in humans as heart attacks.

In this study, the scientists generated a genetic ablation system in zebrafish capable of targeted destruction of heart muscle, and then tracked both atrial and ventricular cardiomyocytes during injury using fluorescent proteins.

Using a genetic fate – a method of comparing cells at various points of development in order to understand their cellular embryonic origin – the scientists revealed that in the heart's atrium can turn into ventricular cardiomyocyctes in a process called transdifferentiation. This transdifferentiation allows the atrial cells to regenerate and repair the ventricle, which is the chamber primarily affected in heart attacks.

First author Ruilin Zhang noted that such transdifferentiation was blocked when was inhibited, and subsequent studies will look at the Notch signaling pathway to understand the underlying mechanism at work.

"This is among the first studies to look at these specific cardiac lineages in detail to see how zebrafish are able to regenerate heart cells," said Chi, adding that their findings open a door to revealing how such regeneration might someday work to change the fate of human hearts.

Explore further: Just a few cell clones can make heart muscle

More information: dx.doi.org/10.1038/nature12322

Related Stories

The birth of new cardiac cells

December 5, 2012

Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Study shows that human hearts generate new cells after birth

January 10, 2013

Researchers at Boston Children's Hospital have found, for the first time that young humans (infants, children and adolescents) are capable of generating new heart muscle cells. These findings refute the long-held belief that ...

Recommended for you

No new heart muscle cells in mice after the newborn period

November 5, 2015

A new study from Sweden's Karolinska Institutet shows that new heart muscle cells in mice are mainly formed directly after birth. After the neonatal period the number of heart muscle cells does not change, and A new study ...

Nanotechnology could spur new heart treatment

October 29, 2015

A new nanoparticle developed by University of Michigan researchers could be the key to a targeted therapy for cardiac arrhythmia, a condition that causes the heart to beat erratically and can lead to heart attack and stroke.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.