Father's age affects offspring

June 7, 2013 by Robert Perkins

(Medical Xpress)—In a new paper, USC Dornsife molecular and computational biologists Norman Arnheim and Peter Calabrese and their team found that the longer a man waits to have children, the greater the chance of having a child with Noonan syndrome.

Scientists in USC Dornsife have unlocked the mystery of why new cases of the genetic disease are so common—a mutation that causes the disease disproportionately increases a normal father's production of sperm carrying the disease trait.

When the mutation arises in a normal sperm stem cell, it makes that cell more likely to reproduce itself than stem cells lacking the mutation. The father then is more likely to have an affected child because more mutant stem cells result in more mutant sperm. The longer the man waits to have children, the greater the chance of having a child with Noonan syndrome, which is among the most common genetic diseases with a simple inheritance pattern.

About one of every 4,000 is a child with a new disease mutation. The disease can cause craniofacial abnormalities, , heart defects, and sometimes .

By examining the testes of 15 unaffected men, a team led by USC Dornsife molecular and Norman Arnheim and Peter Calabrese found that the new mutations were highly clustered in the testis and that the overall proportion of mutated stem cells increased with age. Their computational analysis indicated that the mutation gave a selective edge over nonmutated cells.

"There is competition between stem cells with and without the mutation in each individual testis," said Arnheim, who holds a joint at the Keck School of Medicine of USC. "But what is also unusual in this case is that the mutation which confers the advantage to testis is disadvantageous to any offspring that inherits it."

The new findings also suggested an important new molecular mechanism to explain how certain genetic disease mutations can alter sperm stem cell function leading to exceptionally high frequencies of new cases every generation.

The Arnheim and Calabrese team included postdoctoral research associates Song-Ro Yoon and Soo-Kung Choi, graduate student Jordan Eboreime, all of USC Dornsife, and Bruce Gelb of the Icahn School of Medicine at Mount Sinai in New York City. A paper detailing their research was published on June 6 in The American Journal of Human Genetics.

Explore further: Investigating devastating childhood diseases just got easier

Related Stories

Unraveling tumor growth one stem cell at a time

June 4, 2013

Researchers at the University of Cambridge have discovered that a single mutation in a leukemia-associated gene reduces the ability of blood stem cells to make more blood stem cells, but leaves their progeny daughter cells ...

Recommended for you

New genetic syndrome tied to defects in protein transport

July 28, 2016

An international team of researchers has discovered the mutation responsible for a rare, newly identified genetic disorder that causes craniofacial abnormalities and developmental delays. The mutation disrupts normal protein ...

New genetic clues into motor neuron disease

July 26, 2016

Researchers at The University of Queensland have contributed to the discovery of three new genes which increase the risk of motor neuron disease (MND), opening the door for targeted treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.