Research in fruit flies provides new insight into Barrett's esophagus

Research focused on the regulation of the adult stem cells that line the gastrointestinal tract of Drosophila suggests new models for the study of Barrett's esophagus. Barrett's esophagus, a risk factor for esophageal cancer, is a condition in which the cells of the lower esophagus transform into stomach-like cells. In most cases this transformation has been thought to occur directly from chronic acid indigestion when stomach contents flow back up into the esophagus. A new study, published June 27, 2013 online in Cell Reports, suggests a different cause, namely a change in stem cell function, for this transformation.

Researchers at the Buck Institute manipulated a signaling pathway (BMP-like Dpp) implicated in the development of Barrett's esophagus. After manipulation, the that normally generate the lining of the esophagus of fruit flies morphed into the type of stem cells that generate . "Up until this point, it's not been clear what this signaling pathway does in stem cells of the , or how it influences the regeneration of various types of epithelial cells in the gut of the fly," said Heinrich Jasper, PhD, a professor at the Buck Institute for Research on Aging and senior author of the study.

"Barrett's esophagus may not be simply a mechanical response to the overabundance of gastric acid," said Jasper. "Antacids may not be the best means of treating a condition whose development appears to be more complex. This gives us avenues to look for targets for new therapies."

Between five and ten percent of people with (GERD) develop Barrett's esophagus, usually after the age of 55. Among that population the risk of developing an is about 0.5 percent per year. Typically before the cancer develops, appear in the Barrett's tissue. Barrett's esophagus may be present for many years before cancer develops. Periodic upper GI endoscopy is often used to monitor those with the condition to watch for signs of cancer development.

The Jasper lab is developing the fruit fly, which shares many genetic pathways with humans, as a model to study gastrointestinal disease. Jasper says his lab is now looking at the impact BMP-like Dpp signaling has on the muscles and sphincters of the gastrointestinal system.

add to favorites email to friend print save as pdf

Related Stories

Statins may lower esophageal cancer risk

Jun 06, 2013

(HealthDay)—Statins may lower the risk of esophageal cancer, particularly in patients with Barrett's esophagus, according to a review published in the June issue of Clinical Gastroenterology and Hepatology.

Recommended for you

Generation of tanners see spike in deadly melanoma

6 hours ago

(AP)—Stop sunbathing and using indoor tanning beds, the acting U.S. surgeon general warned in a report released Tuesday that cites an alarming 200 percent jump in deadly melanoma cases since 1973.

Penn team makes cancer glow to improve surgical outcomes

6 hours ago

The best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

Cancer: Tumors absorb sugar for mobility

19 hours ago

Cancer cells are gluttons. We have long known that they monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness ...

User comments