Long-term study reports deep brain stimulation effective for most common hereditary dystonia

June 19, 2013

In what is believed to be the largest follow-up record of patients with the most common form of hereditary dystonia – a movement disorder that can cause crippling muscle contractions – experts in deep brain stimulation report good success rates and lasting benefits.

Michele Tagliati, MD, neurologist, director of the Movement Disorders Program at Cedars-Sinai Medical Center's Department of Neurology, and Ron L. Alterman, MD, chief of the Division of Neurosurgery at Beth Israel Deaconess Medical Center in Boston, published the study in the July issue of the journal Neurosurgery. The doctors worked together at two New York City hospitals for a decade, until Tagliati joined Cedars-Sinai in 2010.

The study is focused on early-onset generalized , which in 1997 was found to be caused by a mutation of the DYT1 gene. Less than 1 percent of the overall population carries this mutation, but the frequency is believed to be three to five times higher among people of Ashkenazi Jewish heritage. Thirty percent of people who carry the defect develop dystonia.

"Long-term follow-up of DYT1 who have undergone DBS treatment is scarce, with current including only about 50 patients followed for three or more years," Tagliati said. This study reviewed medical records of 47 consecutive patients treated with DBS for at least one year over a span of 10 years, 2001 to 2011.

"We found that, on average, symptom severity dropped to less than 20 percent of baseline within two years of device implantation. Sixty-one percent of patients were able to discontinue all their dystonia-related medications, and 91 percent were able to discontinue at least one class of drugs," Tagliati said. "Although a few earlier studies found that stimulation's effectiveness might wane after five years, our observations confirmed what other important DBS studies in dystonia are finding. Patients had statistically and clinically significant improvement that was maintained up to eight years."

Alterman, the article's senior author and the neurosurgeon who performed the implant surgeries, said the study also confirmed the procedure's safety. Complications, such as infection and device malfunction, were rare and manageable.

Patient follow-up ranged from one year to eight years after surgery; 41 patients were seen for at least two years, and four completed eight years. The youngest patient at time of surgery was 8 and the oldest was 71, with a median age of 16.

Dystonia's muscle contractions cause the affected area of the body to twist involuntarily, with symptoms that range from mild to crippling. If drugs – which often have undesirable side effects, especially at higher doses – fail to give relief, neurosurgeons and neurologists may work together to supplement medications with , aimed at modulating abnormal nerve signals. Electrical leads are implanted in the brain – one on each side – and an electrical pulse generator is placed near the collarbone. The device is programmed with a remote, hand-held controller. Tagliati is an expert in device programming, which fine-tunes stimulation for individual patients.

Explore further: Cedars-Sinai movement disorders expert on international task force for dystonia treatment

More information: Neurosurgery, "Deep Brain Stimulation in DYT1 Dystonia: a 10-year Experience," July 2013.

Related Stories

Recommended for you

Motivation to bully is regulated by brain reward circuits

June 29, 2016

Individual differences in the motivation to engage in or to avoid aggressive social interaction (bullying) are mediated by the basal forebrain, lateral habenula circuit in the brain, according to a study conducted at the ...

New clues about the aging brain's memory functions

June 29, 2016

A European study led by Umeå University Professor Lars Nyberg, has shown that the dopamine D2 receptor is linked to the long-term episodic memory, which function often reduces with age and due to dementia. This new insight ...

New technology could deliver drugs to brain injuries

June 28, 2016

A new study led by scientists at the Sanford Burnham Prebys Medical Discovery Institute (SBP) describes a technology that could lead to new therapeutics for traumatic brain injuries. The discovery, published today in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.