Researchers identify a new mechanism of TB drug resistance

Pyrazinamide (PZA)—a frontline tuberculosis (TB) drug—kills dormant persister bacteria and plays a critical role in shortening TB therapy. PZA is used for treating both drug susceptible and multi-drug resistant TB (MDR-TB) but resistance to PZA occurs frequently and can compromise treatment.

A recent study, led by researchers at the Johns Hopkins Bloomberg School of Public Health and Huashan Hospital, Fudan University, has identified a new mechanism for PZA-resistance, which provides new insight into the how this mysterious drug works. The study is available online June 12 in the journal Emerging Microbes and Infections.

Previously, the Johns Hopkins group identified mutations in the pncA gene and the rpsA gene as the primary causes for PZA resistance. According to the study authors, resistance to PZA is most commonly caused by mutations in the pncA gene encoding enzyme nicotinamidase/pyrazinamidase, which converts the prodrug PZA to the active form pyrazinoic acid (POA), and sometimes associated with mutations in the RpsA ( S1). The active form of PZA, POA, interacts chemically with RpsA to block the trans-translation process, which is essential for bacterium's survival under .

However, for unknown reasons, some PZA-resistant lack mutations in pncA or rpsA. The current study suggests that mutations in the panD gene may also be involved. PanD encodes aspartate decarboxylase, which is involved in synthesis of the amino acid β-alanine, a precursor for pantothenate (which is vitamin B5) and co-enzyme A biosynthesis. The panD mutations were identified not only in mutants isolated from in vitro but also in clinical isolates such as in the naturally PZA- M. canettii strain and in a PZA-resistant MDR-TB strain.

"There is significant recent interest in understanding PZA, since it is the only TB drug that cannot be replaced without compromising the efficacy of the therapy. It's indispensible," said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School's W. Harry Feinstone Department of Molecular Microbiology and Immunology. "The process of identifying the correct resistance mutations was quite tedious and took about two years to complete. However, the work led to the identification of a potential new mechanism of PZA resistance."

While more study is needed, Zhang and his colleagues believe panD could be a potential target for new antibiotic therapies.

The study was conducted in collaboration with researchers Wenhong Zhang and Jiazhen Chen from Fudan University. The authors of " in panD encoding aspartate decarboxylase are associated with resistance in Mycobacterium tuberculosis" are Shuo Zhang, Jiazhen Chen, Wanliang Shi, Wei Liu, Wenhong Zhang, and Ying Zhang.

Related Stories

Study finds vitamin C can kill drug-resistant TB (w/ video)

May 21, 2013

In a striking, unexpected discovery, researchers at Albert Einstein College of Medicine of Yeshiva University have determined that vitamin C kills drug-resistant tuberculosis (TB) bacteria in laboratory culture. The finding ...

Recommended for you

Meningitis diagnosis prompted W.Va. clinic probe

16 hours ago

A health official says an investigation that found syringes were being reused at a West Virginia pain management clinic was triggered by patient who developed bacterial meningitis.

California firm issues nationwide fruit recall

20 hours ago

A Central California company has issued a voluntary nationwide recall of specific lots of its fresh peaches, plums, nectarines and pluots over concerns of possible listeria contamination.

User comments