Scientists discover previously unknown requirement for brain development

June 21, 2013

Scientists at the Salk Institute for Biological Studies have demonstrated that sensory regions in the brain develop in a fundamentally different way than previously thought, a finding that may yield new insights into visual and neural disorders.

In a paper published June 7, in Science, Salk researcher Dennis O'Leary and his colleagues have shown that genes alone do not determine how the grows into separate functional areas. Instead, they show that input from the thalamus, the main switching station in the brain for sensory information, is crucially required.

O'Leary has done pioneering studies in "arealization," the way in which the neo-cortex, the major region of cerebral cortex, develops specific areas dedicated to particular functions. In a landmark paper published in Science in 2000, he showed that two regulatory genes were critically responsible for the general pattern of the neo-cortex, and has since shown distinct roles for other genes in this process. In this new set of mouse experiments, his laboratory focused on the visual system, and discovered a new, unexpected twist to the story.

"In order to function properly, it is essential that cortical areas are mapped out correctly, and it is this architecture that was thought to be genetically pre-programmed," says O'Leary, holder of the Vincent J. Coates Chair in Molecular Neurobiology at Salk. "To our surprise, we discovered thalamic input plays an essential role far earlier in ."

Vision is relayed from the outside world into processing areas within the brain. The relay starts when light hits the retina, a thin strip of cells at the back of the eye that detects color and light levels and encodes the information as electrical and . Through , those signals are then sent into the Lateral Geniculate Nucleus (LGN), a structure in thalamus.

In the next important step in the relay, the LGN routes the signals into the primary visual area (V1) in the neo-cortex, a multi-layered structure that is divided into functionally and anatomically distinct areas. V1 begins the process of extracting visual information, which is further carried out by "higher order" visual areas in the neo-cortex that are vitally important to visual perception. Like parts in a machine, the functions of these areas are both individual and integrated. Damage in one tiny area can lead to strange visual disorders in which a person may be able to see a moving ball, and yet not perceive it is in motion.

Current dogma holds that this basic architecture is entirely genetically determined, with environmental input only playing a role later in development. One of the most famous examples of this idea is the Nobel Prize-winning work of visual neuroscientists David Hubel and Torsten Wiesel, which showed that there is a "critical period" of sensitivity in vision. Their finding was commonly interpreted as a warning that without exposure to basic visual stimuli early in life, even an individual with a healthy brain will be unable to see correctly.

Later discoveries in neural plasticity more optimistically suggested that early deprivation can be overcome, and the brain can even sprout new neurons in specific areas. Nevertheless, this still reinforced the idea that environmental influences might modify neural architecture, but only genetics could establish how cortical areas would be laid out.

In their new study, however, O'Leary and the paper's co-first authors, Shen-Ju Chou and Zoila Babot, post-doctoral researchers in O'Leary's laboratory, show that genetics only provides a broad field in the neo-cortex for visual areas.

When they created mouse mutants that disconnected the link between thalamus and cortex but only after early cortical development was complete, they found that the primary and higher order visual areas failed to differentiate from one another as they should.

"Our new understanding is that genes only create a rough lay-out of cortical areas," explains O'Leary. "There must be thalamic input to develop the fine differentiation necessary for proper sensory processing."

Essentially, if the brain were a house, genes would determine which areas were bedrooms. Thalamic input provides the details, distinguishing what will be the master bedroom, a child's bedroom, a guest bedroom and so on. "The size and location of areas within the overall cortex does not change, but without thalamic input from the LGN, the critical differentiation process that creates primary and higher order visual areas does not happen," says O'Leary.

Given that most sensory modalities—— sight, hearing, touch—— route through to cortex, this experiment may suggest why, when someone lacks a sensory modality from birth, that individual has a harder time processing restored sensory input than someone who lost the sense later in life. But in addition, as O'Leary says, "More subtle changes in thalamic input in humans would also likely result in changes to the neo-cortex that could well have a substantial impact on the ability to process vision, or other senses, and lead to abnormal behavior."

O'Leary says his lab plans to continue to explore the links between how in the brain are established and various developmental disorders, such as autism.

Explore further: Conscious perception is a matter of global neural networks

Related Stories

Conscious perception is a matter of global neural networks

June 13, 2012

(Medical Xpress) -- Consciousness is a selective process that allows only a part of the sensory input to reach awareness. But up to today it has yet to be clarified which areas of the brain are responsible for the content ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 21, 2013
Where is the citation or link to the Science paper?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.