Staging system in ALS shows potential tracks of disease progression, study finds

June 19, 2013

The motor neuron disease Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's Disease, progresses in a stepwise, sequential pattern which can be classified into four distinct stages, report pathologists with the Perelman School of Medicine at the University of Pennsylvania in the Annals of Neurology.

This post-mortem staging of ALS brain and spinal cord tissues shows, for the first time, how the fatal may progress from one starting point in the to other regions of brain and spinal cord. As evidence mounts showing that other , such as Alzheimer's and Parkinson's, transmit disease-specific pathological proteins from cell-to-cell within the interconnected of affected individuals, this study suggests that a similar transmission process may be spreading toxic TDP-43 proteins and damaging in the brain and spinal cord of ALS patients.

"Researchers at Penn and beyond can now start to investigate and try to confirm this transmission process in ALS, by looking for cell to of TDP-43 in models of ALS," said senior author John Trojanowski, MD, PhD, director of the Penn Institute on Aging and professor of Pathology and Laboratory Medicine at Penn. "If this transmission process can be identified and understood in ALS, this opens a new pathway for treatments, such as immunotherapies that could interrupt or block damaged and destructive proteins from corrupting other cells, thus halting the spread of disease."

Researchers examined 76 autopsies of patients with ALS, measured pathological TPD-43 distribution and concentration in the nervous system, and were able to map out four distinct stages to assess the disease and burden of pathology.

  • In stage 1, TDP-43 pathology was found within the primary motor cortex, as well as neurons in the spinal cord and nerves in the involved with swallowing, breathing and movement.
  • Stage 2 added to stage 1, with TDP-43 progressing forward in the brain and into brainstem areas important for balance and posture.
  • In stage 3, TDP-43 pathology moved further forward in the frontal cortex and also to areas just behind the .
  • By stage 4, TDP-43 lesions spread more widely to the temporal lobe and hippocampus, areas involved in memory and language comprehension.

The team evaluated genetic material in all but one of the ALS cases, and found that patients with a C9orf72 mutation had a shorter duration of disease (an average of 24 months vs 34 months in patients without the mutation), and while they had the same distribution pattern as ALS cases without the mutation, there was a greater buildup of pathology in each of the regions. 71 percent of patients with this C9orf72 mutation had a family history of ALS, frontotemporal degeneration (FTD) or another neurodegenerative disease, and 29 percent of cases with the C9orf72 mutation were apparently sporadic cases, lacking any ALS-linked genetic mutation.

The information gathered in these post-mortem autopsies mirrors what neurologists see in patients clinically. Future efforts may interrogate the process of disease progression further, work to identify biomarkers that can help detect the burden of disease in patients during life, and, most importantly, home in on therapies to arrest the progression of ALS.

Explore further: Potential new drug target in Lou Gehrig's disease

Related Stories

A drug-screening platform for ALS

August 2, 2012

A research group at the Center for iPS Cell Research and Application (CiRA) at Japan's Kyoto University has successfully recapitulated amyotrophic lateral sclerosis (ALS)-associated abnormalities in motor neurons differentiated ...

Recommended for you

Memory replay prioritizes high-reward memories

February 12, 2016

Why do we remember some events, places and things, but not others? Our brains prioritize rewarding memories over others, and reinforce them by replaying them when we are at rest, according to new research from the University ...

Watching sensory information translate into behavior

February 12, 2016

It remains one of the most fundamental questions in neuroscience: How does the flood of sensory information—everything an animal touches, tastes, smells, sees, and hears—translate into behavior?

Origins of 'rage' identified in brain in male animal model

February 11, 2016

Violent, unprovoked outbursts in male mice have been linked to changes in a brain structure tied to the control of anxiety and fear, according to a report by researchers from NYU Langone Medical Center to be published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.