Sugar solution makes tissues see-through

Japanese researchers have developed a new sugar and water-based solution called SeeDB that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, this technique enabled them to obtain detailed images of a mouse brain at an unprecedented resolution. Credit: RIKEN

Japanese researchers have developed a new sugar and water-based solution that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, this technique enabled them to obtain detailed images of a mouse brain at an unprecedented resolution.

The team from the RIKEN Center for Developmental biology reports their finding today in Nature Neuroscience.

Over the past few years, teams in the USA and Japan have reported a number of techniques to make biological samples transparent, that have enabled researchers to look deep down into biological structures like the brain.

"However, these clearing techniques have limitations because they induce chemical and morphological damage to the sample and require time-consuming procedures," explains Dr. Takeshi Imai, who led the study.

SeeDB, an aqueous fructose solution that Dr. Imai developed with colleagues Drs. Meng-Tsen Ke and Satoshi Fujimoto, overcomes these limitations.

Using SeeDB, the researchers were able to make and brains transparent in just three days, without damaging the fine structures of the samples, or the fluorescent dyes they had injected in them.

They could then visualize the inside a , at the whole-brain scale, under a customized fluorescence microscope without making mechanical sections through the brain.

Sugar solution makes tissues see-through
Japanese researchers have developed a new sugar and water-based solution called SeeDB that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, this technique enabled them to obtain detailed images of a mouse brain at an unprecedented resolution. Credit: RIKEN

They describe the detailed wiring patterns of commissural fibers connecting the right and left hemispheres of the , in three dimensions, for the first time.

Dr. Imai and colleagues report that they were also able to visualize in three dimensions the wiring of mitral cells in the olfactory bulb, which is involved the detection of smells, at single-fiber resolution.

"Because SeeDB is inexpensive, quick, easy and safe to use, and requires no special equipment, it will prove useful for a broad range of studies, including the study of neuronal circuits in human samples," explain the authors.

More information: Meng-Tsen Ke, Satoshi Fujimoto, and Takeshi Imai, "SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction" Nature Neuroscience, 2013 doi: 10.1038/nn.3447

Related Stories

New chemical reagent turns mouse brain transparent

Aug 31, 2011

Japanese researchers at RIKEN have developed a ground-breaking new aqueous reagent which literally turns biological tissue transparent. Experiments using fluorescence microscopy on samples treated with the ...

Three-photon microscopy improves biological imaging

Jan 22, 2013

(Phys.org)—Scientists may be a step closer to cracking one of the world's most compelling mysteries: the impossible complexity of the brain and its billions of neurons. Cornell researchers have demonstrated ...

Brilliant dye to probe the brain

May 02, 2013

To obtain very-high-resolution 3D images of the cerebral vascular system, a dye is used that fluoresces in the near infrared and can pass through the skin. The Lem-PHEA chromophore, a new product outclassing ...

Recommended for you

Faster fish thanks to nMLF neurons

13 hours ago

As we walk along a street, we can stroll at a leisurely pace, walk quickly, or run. The various leg movements needed to do this are controlled by special neuron bundles in the spinal cord. It is not quite ...

User comments