How visual attention affects the brain

June 26, 2013
Brain diagram. Credit:

New work at the University of California, Davis, shows for the first time how visual attention affects activity in specific brain cells. The paper, published June 26 in the journal Nature, shows that attention increases the efficiency of signaling into the brain's cerebral cortex and boosts the ratio of signal over noise.

It's the first time have been able to look at the behavior of synaptic circuits at such a fine-grained level of resolution while measuring the effects of attention, said Professor Ron Mangun, dean of social sciences at UC Davis and a researcher at the UC Davis Center for Mind and Brain.

Our brains recreate an internal map of the world we see through our eyes, mapping our visual field onto specific . Humans and our have the ability to pay attention to objects in the visual scene without looking at them directly, Mangun said.

"Essentially, we 'see out of the corner of our eyes,' as the old saying goes. This ability helps us detect threats, and react quickly to avoid them, as when a car running a red light at high speed is approach from our side," he said.

Postdoctoral scholar Farran Briggs worked with Mangun and Professor Martin Usrey at the UC Davis Center for Neuroscience to measure signaling through single , or synapses, in monkeys while they performed a standard for attention: pressing a joystick in response to seeing a stimulus appear in their field of view.

By taking measurements on each side of a synapse leading into the , the team could measure when neurons were firing, the strength of the signal and the signal-to-noise ratio.

The researchers found that when the animals were paying attention to an area within their field of view, the signal strength through corresponding synapses leading into the cortex became more effective, and the signal was boosted relative to background noise.

Combining established with advanced neuroscience, the technique opens up new possibilities for research.

"There are a lot of questions about attention that we can now investigate, such as which brain mechanisms are disordered in diseases that affect attention," Usrey said.

The method could be used, for example, to probe the cholinergic nervous system, which is impacted by Alzheimer's disease. It could also help to better understand developmental disorders that involve defects in attention, such as attention deficit hyperactivity disorder and autism.

"It's going to turn out to be important for understanding and treating all kinds of diseases," Mangun predicted.

Mangun noted that this work is an example of the effectiveness of interdisciplinary collaboration to tackle tough problems. The researchers from the UC Davis Center for Mind and Brain, which studies cognitive brain mechanisms, and Center for Neuroscience, which studies molecular, cellular and system-level brain mechanisms, each brought specific expertise to the collaborative study.

Explore further: Pay attention: How we focus and concentrate

More information: Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits, DOI: 10.1038/nature12276

Related Stories

Recommended for you

How lying takes our brains down a 'slippery slope'

October 24, 2016

Telling small lies desensitises our brains to the associated negative emotions and may encourage us to tell bigger lies in future, reveals new UCL research funded by Wellcome and the Center for Advanced Hindsight.

Robotic tutors for primary school children

October 24, 2016

The use of robotic tutors in primary school classrooms is one step closer according to research recently published in the open access journal Frontiers in Computational Neuroscience.

Mouse decision-making more complex than once thought

October 24, 2016

Working with dot-counting mice running through a virtual-reality maze, scientists from Harvard Medical School have found that in order to navigate space rodent brains rely on a cascade of neural signals that culminate in ...

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.