'WAVE1' identified as key protein in sepsis

June 27, 2013

Sepsis is a feared complication in bacterial infections. Despite treatment with antibiotics this uncontrolled systemic inflammation is linked to a very high mortality rate because there is no treatment that could bring the inflammatory reaction under control. In a publication, which has just been published, researchers from the MedUni Vienna belonging to the working group under Sylvia Knapp identify the "WAVE1" protein as a significant factor in these inflammatory processes.

In their study, Ulrich Matt and Omar Sharif from the working group under Sylvia Knapp (head of the Laboratory for Infection Biology at the University Department of Internal Medicine 1), describe how uncontrolled inflammations can block the : are produced to defend against bacterial infections. These kill the pathogens, but at the same time damage the body's own structures such as cell membranes. If these phospholipid membranes are oxidised, they interfere in the inflammatory process and block phagocytosis, the mechanism in which are removed by phagocytes.

A key protein in this mechanism is the "WAVE1" protein which binds with actin, the cell's structural protein. If WAVE1 is missing, oxidised lipids can no longer affect the engulfing of bacteria and thus the defence against infection is once more intact. Consequently, a sepsis caused by the common pathogen Escherichia coli is more survivable.

In addition, the researchers found out that oxidised lipids also occur in the peritoneal dialysates of patients with , and that these lipids can also block the phagocytosis of bacteria – but only when the WAVE1 protein is present. This knowledge is interesting due to the fact that patients with long-term exhibit a raised risk of infection for various, mostly unexplained reasons.

"A targeted blocking of inflammatory molecules, which interfere negatively in the body's defence mechanisms, appears attractive," says the author of the study, Ulrich Matt: "The new insights do at any rate expand our understanding of the innate immune response in the defence against bacteria and highlight a potentially interesting approach for treatment to take." Further studies are now ongoing to examine to what extent a therapeutic intervention via WAVE1 would make sense. "Before the clinical application of an immunomodulating treatment can occur there is still quite a way to go," is how Sylvia Knapp sums up the position.

Explore further: Molecular causes for life-threatening fungal infections in case of sepsis unravelled

More information: Matt, U. et al. WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs, Journal of Clinical Investigation, 2013;123(7). doi:10.1172/JCI60681.

Related Stories

A new 'on' signal for inflammation

May 14, 2013

(Medical Xpress)—Inflammation is an important response in the body - it helps you to kill off invaders such bacteria that could cause a harmful infection. But if it's chronic or uncontrolled, inflammation can also cause ...

Preventing blood poisoning

May 17, 2013

Peptide molecules derived from the body's natural immune system can help boost the body's defence against life-threatening blood poisoning, joint University research has uncovered.

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.