Researchers discover how brain cells change their tune (w/ Video)

July 25, 2013
NIH researchers discover how brain cells change their tune
NIH researchers use advanced microscopic techniques to watch mitochondria dance around and tune nerve cell voices. This kymograph describes their dynamic steps. Credit: Sheng lab, NINDS, Bethesda, Md.

Brain cells talk to each other in a variety of tones. Sometimes they speak loudly but other times struggle to be heard. For many years scientists have asked why and how brain cells change tones so frequently. Today National Institutes of Health researchers showed that brief bursts of chemical energy coming from rapidly moving power plants, called mitochondria, may tune brain cell communication.

"We are very excited about the findings," said Zu-Hang Sheng, Ph.D., a senior principal investigator and the chief of the Synaptic Functions Section at the NIH's National Institute of Neurological Disorders and Stroke (NINDS). "We may have answered a long-standing, fundamental question about how communicate with each other in a variety of voice tones."

The network of throughout the body typically controls thoughts, movements and senses by sending thousands of neurotransmitters, or brain chemicals, at communication points made between the cells called . Neurotransmitters are sent from tiny found on nerve cells, called presynaptic boutons. Boutons are aligned, like beads on a string, on long, thin structures called axons. They help control the strength of the signals sent by regulating the amount and manner that nerve cells release transmitters.

Mitochondria are known as the cell's power plant because they use oxygen to convert many of the chemicals cells use as food into adenosine triphosphate (ATP), the main energy that powers cells. This energy is essential for nerve cell survival and communication. Previous studies showed that mitochondria can rapidly move along axons, dancing from one bouton to another.

In this study, published in Cell Reports, Dr. Sheng and his colleagues show that these moving power plants may control the strength of the signals sent from boutons.

"This is the first demonstration that links the movement of mitochondria along axons to a wide variety of nerve cell signals sent during synaptic transmission," said Dr. Sheng.

This video is not supported by your browser at this time.
Here is a video of mitochondrial power plants (red) passing by synaptic boutons (green) as they move through a nerve cell axon. The Sheng lab showed that their movement helps control the voice tone nerve cells use to communicate with each other. Credit: Sheng laboratory, NINDS, Bethesda, Md.

The researchers used advanced microscopic techniques to watch mitochondria move among boutons while they released neurotransmitters. They found that boutons sent consistent signals when mitochondria were nearby.

"It's as if the presence of mitochondria causes a bouton to talk in a monotone voice," said Tao Sun, Ph.D., a researcher in Dr. Sheng's laboratory and the first author of the study.

Surprisingly, when the mitochondria were missing or moving away from boutons, the signal strength fluctuated. The results suggested that the presence of stationary power plants at synapses controls the stability of the nerve signal strength.

To test this idea further, the researchers manipulated mitochondrial movement in axons by changing levels of syntaphilin, a protein that helps anchor mitochondria to the nerve cell's skeleton found inside axons. Removal of syntaphilin resulted in faster moving mitochondria and electrical recordings from these neurons showed that the signals they sent fluctuated greatly. Conversely, elevating syntaphilin levels in nerve cells arrested mitochondrial movement and resulted in boutons that spoke in monotones by sending signals with the same strength.

"It's known that about one third of all mitochondria in axons move. Our results show that brain cell communication is tightly controlled by highly dynamic events occurring at numerous tiny cell-to-cell connection points," said Dr. Sheng.

In separate experiments the researchers watched ATP energy levels in these tiny boutons as they sent nerve messages.

"The levels fluctuated more in boutons that did not have mitochondria nearby," said Dr. Sun.

The researchers also found that blocking ATP production in mitochondria with the drug oligomycin reduced the size of the signals boutons sent even if a mitochondrial power plant was nearby.

"Our results suggest that local ATP production by nearby mitochondria is critical for consistent release," said Dr. Sheng. "It appears that variability in synaptic transmission is controlled by rapidly moving which provide brief bursts of energy to the boutons they pass through."

Problems with mitochondrial energy production and movement throughout nerve have been implicated in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other major neurodegenerative disorders. Dr. Sheng thinks these results will ultimately help scientists understand how these problems can lead to disorders in brain cell communication.

"Our findings reveal the cellular mechanisms that tune brain communication by regulating mitochondrial mobility, thus advancing our understanding of human neurological disorders," said Dr. Sheng.

Explore further: Mutations in VCP gene implicated in a number of neurodegenerative diseases

More information: Cell Reports, July 25, 2013. DOI: 10.1016/j.celrep.2013.06.040

Related Stories

New light shed on early stage Alzheimer's disease

April 22, 2013

The disrupted metabolism of sugar, fat and calcium is part of the process that causes the death of neurons in Alzheimer's disease. Researchers from Karolinska Institutet in Sweden have now shown, for the first time, how important ...

Study uses Botox to find new wrinkle in brain communication

May 2, 2013

National Institutes of Health researchers used the popular anti-wrinkle agent Botox to discover a new and important role for a group of molecules that nerve cells use to quickly send messages. This novel role for the molecules, ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Jul 26, 2013
Wow, that's incredible, a whole new mechanism for neural modulation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.