New cancer imaging technology shows promise

July 19, 2013

(Medical Xpress)—A new imaging technology that combines ultrasound and laser technologies has been shown to be highly effective in identifying prostate cancer. The system, which was developed by University of Rochester Medical Center (URMC) researchers, could also ultimately be deployed to detect and track breast, kidney, liver, skin and thyroid cancers.

The new medical – called multispectral photoacoustic imaging – was created by Vikram Dogra, M.D., a professor in URMC's Department of Imaging Sciences, in collaboration with Naval Rao, Ph.D. from the Rochester Institute of Technology's Center for Imaging Technology.

Physicians currently have a suite of tools at their disposal to test for prostate cancer. Monitoring PSA levels, digital rectal examinations, and transrectal ultrasound are all used as frontline screening tools. The current gold standard for a of an aggressive vs. slow growing prostate cancer is a . But even this method – which is invasive, uncomfortable, and carries a risk of side effects – has its limitations; cancers are only successfully detected 70 percent of the time.

Seeing the need for a noninvasive and effective imaging technology to detect , Dogra and his colleagues began to explore the use of a that combines ultrasound and .

The system uses nanosecond long bursts of light from a laser to bombard the . This heats the tissue and creates thermal waves that can be detected by ultrasound. These signals are then used to recreate an image of the target tissue and – because different wave lengths elicit different responses – observe variations in . To accomplish this, the researchers used an acoustic lens to focus the image, a method that is more cost effective than the alternative electronic focusing system.

The system enables researchers to track the level of lipids (fat), water, and forms of hemoglobin found in the blood, all of which respond to different wave lengths from the laser. Fluctuations in these compounds can indicate a tumor's status. Hemoglobin, the protein in red blood cells responsible for transporting oxygen, is of particular interest. Increases in the level of deoxyhemoglobin – the form hemoglobin without the bound oxygen – significantly raises the odds that the tissue is malignant.

"By observing increases and decreases in these things, particularly deoxyhemoglobin levels, we can tell if the tissue is malignant or benign," said Dogra.

Earlier this year, the researchers presented the findings of the first study using multispectral photoacoustic imaging to evaluate prostate cancer specimens at a meeting of the meeting of the American Roentgen Ray Society. The system was able to identify 25 or 26 healthy prostates, and 12 of 16 cancerous prostates, a 96 percent and 81 percent success rate.

Dogra and his team are now in the process of developing a prototype version of their scanner and hope to begin clinical evaluation of the device within two years. They believe that the system will ultimately be significantly less expensive – both in terms of equipment cost and cost per test – than biopsies and that the underlying technology could ultimately be applied to several other forms of cancer.

Related Stories

GPS-like technology helps diagnose prostate tumors

May 3, 2013

The lead investigator of a way to obtain images of prostate tumors and accurately diagnose them said Thursday that the new technology is the medical equivalent of a global positioning system for the prostate gland.

Recommended for you

New treatment options for a fatal leukemia

July 27, 2015

In industrialized countries like in Europe, acute lymphoblastic leukemia is the most common form of cancer in children. An international research consortium lead by pediatric oncologists from the Universities of Zurich and ...

Exciting results from cancer immunoagent study

July 20, 2015

(Medical Xpress)—Cancer therapies have improved incrementally over the years, but cancer treatment largely remains analogous to forest fire suppression, in which the spread of fire is contained with deliberate controlled ...

Modified DNA building blocks are cancer's Achilles heel

July 22, 2015

In studying how cells recycle the building blocks of DNA, Ludwig Cancer Research scientists have discovered a potential therapeutic strategy for cancer. They found that normal cells have highly selective mechanisms to ensure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.