Chemical compound shows promise as alternative to opioid pain relievers

July 15, 2013

A drug targeting a protein complex containing two different types of opioid receptors may be an effective alternative to morphine and other opioid pain medications, without any of the side effects or risk of dependence, according to research led by the Icahn School of Medicine at Mount Sinai. The findings are published in July in the journal Proceedings of the National Academy of Sciences.

Morphine is still the most widely-used , or analgesic, in people with severe pain, but chronic use can lead to addiction and negative side effects such as respiratory issues, constipation, or diarrhea.

In a previous study published in Science Signaling by Lakshmi Devi, PhD, Professor of Pharmacology and Systems Therapeutics at Mount Sinai, researchers identified a called a GPCR heteromer, which is a protein complex that is made up of two called mu and delta. They also showed that the heteromer is abundant in the area of the brain that processes pain, and is the likely cause of morphine tolerance and side effects.

In the current study, Dr. Devi carried out high throughput screening in collaboration with researchers at the National Institutes of Health (NIH) to identify which small molecules might act on the signaling pathway associated with this protein complex. Researchers found one compound called CYM51010 that was as potent as , but less likely to result in tolerance and negative side effects. Dr. Devi's team is currently developing modified versions of this compound that may have potential as analgesics with reduced side effects.

"GPCR heteromers have been suggested to represent powerful targets for improved, novel therapeutics with reduced adverse effects in people with ," said Dr. Devi. "However, there are presently no chemical tools that allow us to investigate their role in vivo. Our work represents a promising step in this direction, providing results that pave the way towards a new understanding of the function and pharmacology of opioid receptor heteromers."

Dr. Devi and her team are currently working with co-author Marta Filizola, PhD, Associate Professor of Structural and Chemical Biology at Mount Sinai, to learn how CYM51010 binds to the protein complex. Armed with this information, they hope to modify the compound to treat pain without the development of dependency. They also plan to restrict their benefit to the gastrointestinal system and treat diarrhea associated with irritable bowel disease that is unresponsive to existing therapies.

Explore further: A path to lower-risk painkillers

More information: Identification of a ?-? opioid receptor heteromer-biased agonist with antinociceptive activity, PNAS, Published online before print July 1, 2013, doi: 10.1073/pnas.1222044110

Related Stories

A path to lower-risk painkillers

June 10, 2013

For patients managing cancer and other chronic health issues, painkillers such as morphine and Vicodin are often essential for pain relief. The body's natural tendency to develop tolerance to these medications, however, often ...

Missing enzyme linked to drug addiction

June 17, 2013

A missing brain enzyme increases concentrations of a protein related to pain-killer addiction, according to an animal study. The results will be presented Monday at The Endocrine Society's 95th Annual Meeting in San Francisco.

A new promising approach in the therapy of pain

December 4, 2012

The treatment of inflammatory pain can be improved by endogenous opioid peptides acting directly in injured tissue. Scientists at the Charité – Universitätsmedizin Berlin and the Université Paris Descartes showed that ...

Recommended for you

Scientists identify neurons devoted to social memory

September 30, 2016

Mice have brain cells that are dedicated to storing memories of other mice, according to a new study from MIT neuroscientists. These cells, found in a region of the hippocampus known as the ventral CA1, store "social memories" ...

Throwing light on the brain's perception of transparency

September 30, 2016

Researchers have created a new optical illusion that helps reveal how our brains determine the material properties of objects – such as whether they are transparent, shiny, matte or translucent – just from looking at ...

Scientists track unexpected mechanisms of memory

September 29, 2016

Do you remember Simone Biles's epic gymnastics floor routine that earned her a fifth Olympic medal? Our brains hold on to memories like these via physical changes in synapses, the tiny connections between neurons.

Some brains are blind to moving objects

September 28, 2016

As many as half of people are blind to motion in some part of their field of vision, but the deficit doesn't have anything to do with the eyes.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Jul 16, 2013
ANY analgesic has a risk of dependence. It is not the substance that is habit forming, but the relief from pain that addicts crave.
captainkolak
not rated yet Jul 25, 2013
Have to disagree with you tadchem. Opiates are infinitely more addictive than for example NSAIDS, and this is attributed to the lack of euphoria/pleasure/causing a 'high' that opiates produce. A painkiller that doesn't cause a 'high' could still be abused, but not as a means to get high which is how most opiates are abused.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.