Early spatial reasoning predicts later creativity and innovation, especially in STEM fields

Exceptional spatial ability at age 13 predicts creative and scholarly achievements over 30 years later, according to results from a new longitudinal study published in Psychological Science, a journal of the Association for Psychological Science.

The study, conducted by psychology researcher David Lubinski and colleagues at Vanderbilt University, provides evidence that early —the skill required to mentally manipulate 2D and 3D objects—predicts the development of new knowledge, and especially innovation in science, technology, engineering, and mathematics (STEM) domains, above and beyond more traditional measures of mathematical and verbal ability.

"We live in the age of human capital," says Lubinski. "Creativity is the currency of the modern era, especially in STEM disciplines. Having a better understanding of the human attributes that facilitate innovation has clear practical implications for education, training, business, and talent development."

And yet, despite longstanding speculation that spatial ability may play an important role in supporting creative thinking and innovation, there are very few systems in place to track skill in :

"Current procedures for identifying intellectually precocious youth currently miss about half of the top 1% in spatial ability," Lubinski explains.

Using data from a study that began in the late 1970s, Lubinski and colleagues followed up with 563 students who had scored exceptionally well—in the top 0.5%—on the SATs at age 13. The researchers also examined data on the participants' spatial ability at age 13, as measured by the Differential Aptitude Test.

Confirming previous research, the data revealed that participants' mathematical and scores on the SAT at age 13 predicted their scholarly publications and patents 30 years later.

But spatial ability at 13 yielded additional predictive power, suggesting that early spatial ability contributes in a unique way to later creative and scholarly outcomes, especially in STEM domains.

Importantly, these results confirm longstanding speculation in the psychological sciences that spatial ability offers something important to the understanding of creativity that traditional measures of cognitive abilities used in educational and occupational selection don't capture.

Lubinski believes cultivating these skills is imperative for ensuring scientific innovation.

"These students have exceptional and under-challenged potential, especially for engineering and technology," Lubinski explains. "We could do a much better job of identifying these students and affording them better opportunities for developing their talents."

Related Stories

Spatial training boosts math skills

Jun 25, 2013

(Medical Xpress)—Training young children in spatial reasoning can improve their math performance, according to a groundbreaking study from Michigan State University education scholars.

Developing our brightest minds

Jan 31, 2007

Who will be the next Albert Einstein? The next Stephen Hawking? A new report from Vanderbilt University reveals the complex mix of factors that create these intellectual leaders: cognitive abilities, educational opportunities, ...

Recommended for you

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

alfie_null
not rated yet Jul 15, 2013
One thing I can assuredly predict: a spurt in prep courses purporting to train spatial ability. Hmmm - video games? For precocious kids, an excuse for why they really need to spend so much time training.