Understanding the effects of genes on human traits

July 31, 2013

Recent technological developments in genomics have revealed a large number of genetic influences on common complex diseases, such as diabetes, asthma, cancer or schizophrenia. However, discovering a genetic variant predisposing to a disease is only a first step. To apply this knowledge towards prevention or cure, including tailoring treatment to the patient's genetic profile –also known as personalized medicine – we need to know how this genetic variant affects health.

In a study published today in Nature Communications, Dr. Constantin Polychronakos from the Research Institute of the McGill University Health Centre (RI-MUHC), and collaborators from McGill University and The University of Texas, propose a novel approach for scanning the entire genome that will help us understand the effect of genes on human traits.

"This completely new methodology really opens up different ways of understanding how the genome affects the biology of the human body", says Dr. Polychronakos, corresponding author of the study and Director of the Endocrine Genetics Laboratory at the Montreal Children's Hospital and Professor in the Departments of Pediatrics and Human Genetics at McGill University.

DNA is the blueprint according to which our body is constructed and functions. Cells "read" this blueprint by transcribing the information into RNA, which is then used as a template to construct proteins – the body's building blocks. Genes are scanned based on the association of their RNA with ribosomes – particles in which takes place.

"Until now, researchers have been focusing on the effects of disease-associated genomic variants on DNA-to-RNA transcription, instead of the challenging question of effects on RNA-to-," says Dr. Polychronakos. "Thanks to this methodology, we can now better understand the effect of genetic variants on translation of RNA to protein – a powerful way of developing biomarkers for personalized medicine and new therapies."

Explore further: Process important to brain development studied in detail

More information: www.nature.com/ncomms/2013/130731/ncomms3260/full/ncomms3260.html

Related Stories

Process important to brain development studied in detail

November 7, 2011

Knowledge about the development of the nervous system is of the greatest importance for us to understand the function of the brain and brain disorders. Researchers at Uppsala University have examined the key step when genes ...

New method helps link genomic variation to protein production

November 6, 2012

Scientists have adopted a novel laboratory approach for determining the effect of genetic variation on the efficiency of the biological process that translates a gene's DNA sequence into a protein, such as hemoglobin, according ...

Decoding mystery sequences involved in gene regulation

July 10, 2013

Every cell in an organism's body has the same copy of DNA, yet different cells do different things; for example, some function as brain cells, while others form muscle tissue. How can the same DNA make different things happen? ...

Recommended for you

Solving the mystery of meningiomas reveals a surprise twist

August 23, 2016

In solving one mystery—the genetic roots of benign brain tumors called meningiomas—a team of scientists led by Yale researchers stumbled upon an even greater one: How is it possible that two of the mutations linked to ...

Two key proteins preserve vital genetic information

August 22, 2016

Cancer is often driven by various genetic mutations that are acquired through changes to a person's DNA over time. These alterations can occur at the chromosome level if the proteins are not properly organized and segregated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.