Understanding the effects of genes on human traits

Recent technological developments in genomics have revealed a large number of genetic influences on common complex diseases, such as diabetes, asthma, cancer or schizophrenia. However, discovering a genetic variant predisposing to a disease is only a first step. To apply this knowledge towards prevention or cure, including tailoring treatment to the patient's genetic profile –also known as personalized medicine – we need to know how this genetic variant affects health.

In a study published today in Nature Communications, Dr. Constantin Polychronakos from the Research Institute of the McGill University Health Centre (RI-MUHC), and collaborators from McGill University and The University of Texas, propose a novel approach for scanning the entire genome that will help us understand the effect of genes on human traits.

"This completely new methodology really opens up different ways of understanding how the genome affects the biology of the human body", says Dr. Polychronakos, corresponding author of the study and Director of the Endocrine Genetics Laboratory at the Montreal Children's Hospital and Professor in the Departments of Pediatrics and Human Genetics at McGill University.

DNA is the blueprint according to which our body is constructed and functions. Cells "read" this blueprint by transcribing the information into RNA, which is then used as a template to construct proteins – the body's building blocks. Genes are scanned based on the association of their RNA with ribosomes – particles in which takes place.

"Until now, researchers have been focusing on the effects of disease-associated genomic variants on DNA-to-RNA transcription, instead of the challenging question of effects on RNA-to-," says Dr. Polychronakos. "Thanks to this methodology, we can now better understand the effect of genetic variants on translation of RNA to protein – a powerful way of developing biomarkers for personalized medicine and new therapies."

More information: www.nature.com/ncomms/2013/130… full/ncomms3260.html

Related Stories

New method helps link genomic variation to protein production

Nov 06, 2012

Scientists have adopted a novel laboratory approach for determining the effect of genetic variation on the efficiency of the biological process that translates a gene's DNA sequence into a protein, such as hemoglobin, according ...

Process important to brain development studied in detail

Nov 07, 2011

Knowledge about the development of the nervous system is of the greatest importance for us to understand the function of the brain and brain disorders. Researchers at Uppsala University have examined the key step when genes ...

Recommended for you

Changes in scores of genes contribute to autism risk

Oct 29, 2014

Small differences in as many as a thousand genes contribute to risk for autism, according to a study led by Mount Sinai researchers and the Autism Sequencing Consortium (ASC), and published today in the journal Nature.

Dozens of genes associated with autism in new research

Oct 29, 2014

Two major genetic studies of autism, led in part by UC San Francisco scientists and involving more than 50 laboratories worldwide, have newly implicated dozens of genes in the disorder. The research shows ...

Genetic link to kidney stones identified

Oct 29, 2014

A new breakthrough could help kidney stone sufferers get an exact diagnosis and specific treatment after genetic links to the condition were identified.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.