Irreversible tissue loss seen within 40 days of spinal cord injury

July 2, 2013

The rate and extent of damage to the spinal cord and brain following spinal cord injury have long been a mystery. Now, a joint research effort by UCL, the University of Zurich and University Hospital Balgrist has found evidence that patients already have irreversible tissue loss in the spinal cord within 40 days of injury.

The study, published in the journal Lancet Neurology, used a new imaging , developed at the Wellcome Trust Centre for Neuroimaging (UCL). This enables the impact of therapeutic treatments and rehabilitative interventions to be determined more quickly and directly.

A injury changes the functional state and structure of the spinal cord and the brain. For example, a patient's ability to walk or move their hands can become restricted. How quickly such degenerative changes develop, however, has remained a mystery until now. The assumption was that it took years for patients with a spinal cord injury to also display anatomical changes in the spinal cord and brain above the injury site. This paper demonstrates for the first time that these changes already occur within 40 days of acute spinal cord injury.

The scientists studied 13 patients with acute every three months for a year using novel MRI () protocols. They discovered that the diameter of the spinal cord had rapidly decreased and was already seven percent smaller after 12 months.

lesser volume decline was also evident in the corticospinal tract, a tract indispensable for motor control, and in the .

The extent of the degenerative changes coincided with the clinical outcome. "Patients with a greater tissue loss above the injury site recovered less effectively than those with less changes," explains Patrick Freund, the investigator responsible for the study at the Paraplegic Center Balgrist.

Treatments targeting the injured spinal cord have entered clinical trials. Gaining insights into mechanisms of repair and recovery within the first year are crucial. Thanks to the use of the new neuroimaging protocols, Freund says, we now have the possibility of displaying the effect of therapeutic treatments on the central nervous system and of rehabilitative measures more quickly. Consequently, the effect of new therapies can also be recorded more rapidly.

"This study is an excellent example of the value of combining the complementary expertise of the two universities," says UCL's Dean of Brain Sciences, Professor Alan Thompson, who is one of the senior authors of the study. "It provides exciting new insights into the complications of spinal cord trauma and gives us the possibility of identifying both imaging biomarkers and therapeutic targets."

The findings are the result of a new three-year neuroscience partnership between UCL and the Neuroscience Centre Zurich (ZNZ), representing both the University of Zurich and the Swiss Federal Institute of Technology (ETHZ).

More information: Freund, P. et al. 'MRI investigation of the sensorimotor cortex and corticospinal tract after acute spinal cord injury: a prospective longitudinal study', The Lancet Neurology, July 2, 2013. doi.org/10.1016/S1474-4422(13)70146-7

Related Stories

Cervical disc-level canal diameter predicts spinal injury

June 13, 2013

(HealthDay)—Disc-level canal diameter determined from magnetic resonance imaging (MRI) can identify patients at risk for acute spinal cord injury (SCI) after minor trauma, according to a study published in the June issue ...

Recommended for you

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

Static synapses on a moving structure: Mind the gap!

July 22, 2015

In biology, stability is important. From body temperature to blood pressure and sugar levels, our body ensures that these remain within reasonable limits and do not reach potentially damaging extremes. Neurons in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.