Laser-controlled molecular switch turns blood clotting on, off on command

July 24, 2013
Laser-controlled molecular switch turns blood clotting on, off on command
DNA-controlled nanoparticles work as a two-way switch for blood clotting. Credit: Helena de Puig

Researchers have designed tiny, light-controlled gold particles that can release DNA controls to switch blood clotting off and on. The results are reported July 24 in the open access journal PLoS ONE by Kimberly Hamad-Schifferli and colleagues from the Massachusetts Institute of Technology.

The two-way switch for blood clotting relies on the ability of two to selectively release different DNA molecules from their surface under different wavelengths of . When stimulated by one wavelength, one nanorod releases a piece of DNA that binds the blood protein thrombin and blocks clot formation. When the complementary DNA piece is released from the other nanorod, it acts as an antidote and releases thrombin, restoring clotting activity.

Natural blood clotting is precisely synchronized to occur at the right time and place. Wound healing, surgery and other conditions require manipulation of this process, typically through the use of anticoagulants like heparin or warfarin. However, these drugs are inherently one-sided as they can only block clotting, and reversing their effects depends on removing them from the bloodstream. The methods described in this research open up new possibilities for more precise, selective control of the blood clotting process during therapy.

More information: PLoS ONE 8(7): e68511. doi:10.1371/journal.pone.0068511

Related Stories

Blood clotting and bowel cancer risk

June 6, 2011

Back in the mid 19th century, a French doctor, Armand Trousseau, discovered a connection between cancer and thrombosis – the formation of often dangerous blood clots that can lead to venous occlusion. Today it is known ...

Reasons for severe bleeding in hemophilia revealed

November 20, 2012

New insights into what causes uncontrollable bleeding in hemophilia patients are provided in a study published by Cell Press on November 20th in the Biophysical Journal. By revealing that blood clots spread in traveling waves ...

Scientists develop antidote to new anticoagulants

March 5, 2013

(Medical Xpress)—Anticoagulants have saved the lives of those at risk for heart attack or stroke. However, because they prevent blood clotting, they can be dangerous to patients who suffer traumatic injuries or who require ...

Researchers find key to blood-clotting process

June 26, 2013

Researchers, including Professor Alastair Poole and Dr Matthew Harper from the University of Bristol's School of Physiology and Pharmacology, have uncovered a key process in understanding how blood clots form that could help ...

Recommended for you

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

Fluorescent material reveals how cells grow

July 21, 2015

Fibre from a semiconducting polymer, developed for solar cells, is an excellent support material for the growth of new human tissue. Researchers at Linköping University have shown that the fibre glows, which makes it possible ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.