Metastatic pancreatic, primary breast cancer have common growth mechanisms, study suggests

A recently discovered form of the protein that triggers blood clotting plays a critical role in promoting the growth of metastatic pancreatic cancer and primary breast cancer, according to the cumulative findings from two new scientific manuscripts published online ahead of print in the International Journal of Cancer and PNAS (Proceedings of the National Academy of Sciences).

The protein, called "Tissue Factor," is present in various tissues—for example, walls of blood vessels. Earlier studies suggested that alternatively spliced Tissue Factor (asTF) may contribute to , but the molecular events leading to this were previously unknown.

New research conducted through an international collaboration between the labs of Vladimir Bogdanov, PhD, of the University of Cincinnati Cancer Institute, and Henri Versteeg, PhD, of the Einthoven Laboratory for Experimental Vascular Medicine at the Leiden University Medical Center in Leiden, the Netherlands, articulates how asTF fuels growth and metastasis of solid cancers.

Using preclinical animal models, Bogdanov and Versteeg's teams obtained the first scientifically validated evidence that asTF promotes the spread of pancreatic cancer and promotes primary growth of tumors.

"We have demonstrated that targeting asTF with a novel monoclonal antibody—developed based on our 10 years of studying asTF—also stops the growth of breast cancer in an animal model, giving us a promising new target to fight certain forms of breast cancer," says Bogdanov, who originally described asTF in 2003. UC filed a patent for this technology in January 2013.

Bogdanov and Versteeg presented their findings at the XXIV Congress of the International Society on Thrombosis and Haemostasis in Amsterdam, the Netherlands (held June 29-July 4, 2013).

"Many molecules on the surface of cells—including integrins—are important for the function of both normal and , so targeting integrins for stopping the growth of cancer is not a promising strategy. What is unique about asTF is that it binds to integrins on vessel-forming cells, activating them. We've shown that certain cancer cells share those same qualities, so if you target asTF—which is elevated in cancer—there is significant potential to spare the 'good' parts of the cellular system while removing the 'bad' cancer-specific protein from the game," explains Bogdanov.

"Many routine therapies such as chemotherapy or radiation may not always be efficient. Targeting asTF in tumors using our monoclonal antibody may form a potent additional anticancer strategy in combination with conventional avenues", says Versteeg.

Related Stories

Developmental protein plays role in spread of cancer

Jun 14, 2013

A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating the spread of cancer, known as metastasis, report researchers ...

Recommended for you

Early hormone therapy may be safe for women's hearts

2 hours ago

(HealthDay)—Healthy women at low risk of cardiovascular disease may be able to take hormone replacement therapy soon after menopause for a short time without harming their hearts, according to a new study.

Low yield for repeat colonoscopy in some patients

3 hours ago

(HealthDay)—Repeat colonoscopies within 10 years are of little benefit to patients who had no polyps found on adequate examination; however, repeat colonoscopies do benefit patients when the baseline examination was compromised, ...

Cell's recycling center implicated in division decisions

5 hours ago

Most cells do not divide unless there is enough oxygen present to support their offspring, but certain cancer cells and other cell types circumvent this rule. Researchers at The Johns Hopkins University have now identified ...

User comments