Methamphetamine increases susceptibility to deadly fungal infection

Methamphetamine use can make a person more susceptible to the lung infection cryptococcosis, according to a study published in mBio, the online open-access journal of the American Society for Microbiology.

Researchers found that injected (METH) significantly enhanced colonization of the lungs by Cryptococcus neoformans and accelerated progression of the disease and the time to death in mouse models. C. neoformans is usually harmless to healthy individuals, but METH causes chinks in the blood-brain barrier that can permit the fungus to invade the , where it causes a deadly .

"The highest uptake of the drug is in the lungs," says corresponding author Luis Martinez of Long Island University-Post, in Brookville, New York and of Albert Einstein College of Medicine in The Bronx. "This may render the individual susceptible to infection. We wanted to know how METH would alter C. neoformans infection."

Thirteen million people in the US have abused METH in their lifetimes, and regular METH users numbered approximately 353,000 in 2010, the most recent year for which data are available. A central stimulant that adversely impacts immunological responses, recent studies show that injected METH accumulates in various sites in the body, but the lungs seem to accumulate the highest concentrations, says Martinez, which could well impact how the lung responds to invading pathogens.

To study the impact this accumulation might have on , Martinez and his colleagues injected with doses of METH over the course of three weeks, then exposed those mice to the C. neoformans fungus. In humans, C. neoformans initially infects the lungs but often crosses the blood-brain barrier to infect the central nervous system and cause meningitis. In their experiments, METH significantly accelerated the speed with which the infected mice died, so that nine days after infection, 100% of METH treated mice were dead, compared to 50% of the control mice.

Using fluorescent microscopy to examine lung tissue in METH-treated and control mice, the researchers found that METH enhanced the interaction of C. neoformans with epithelial cells in the lining of the lung. Seven days after exposure to the fungus, the lungs of METH-treated mice showed large numbers of fungi surrounded by vast amounts of gooey polysaccharide in a biofilm-like arrangement. METH-treated mice also displayed low numbers of inflammatory cells early during infection and breathed faster than controls, a sign of respiratory distress.

Martinez says this greater ability to cause disease in the lung may be due in part to simple electrical attraction. Their analysis shows that METH imparts a greater negative charge on the surface of the fungal cells, possibly lending them a greater attraction to the surface of the lung and an enhanced ability to form a biofilm that can protect its members from attack by the immune system. The fungus also releases more of its capsular polysaccharide in METH-treated mice, which can help the organism colonize and persist in the lung.

"When the organism senses the drug, it basically modifies the polysaccharide in the capsule. This might be an explanation for the pathogenicity of the organism in the presence of the drug, but it also tells you how the organism senses the environment and that it will modify the way that it causes disease," Martinez says.

But the fungus doesn't stop in the lungs. "The drug stimulates colonization and biofilm formation in the lungs of these animals," says Martinez. "And this will follow to dissemination to the central nervous system by the fungus."

C. neoformans in the lung moved on to the bloodstream and then into the central nervous system. The brains of METH-treated mice had higher numbers of C. neoformans cells, greater quantities of the fungus' polysaccharide, and larger lesions than control mice, indicating that METH has a detrimental effect on the blood-brain barrier, permitting the pathogen to cross more easily from the bloodstream to infect the central nervous system.

"METH-induced alterations to the molecules responsible to maintain the integrity of the blood-brain barrier provide an explanation for the susceptibility of METH abuser to brain infection by HIV and other pathogens," write the authors.

Martinez and his colleagues plan to follow up on the work by investigating how aspects of the immune system might be involved in changes the drug causes to the blood-brain barrier.

add to favorites email to friend print save as pdf

Related Stories

DEA disagrees with firm's meth-resistant claims

May 29, 2013

The Drug Enforcement Administration says a suburban St. Louis pharmaceutical company is wrong for marketing its pseudoephedrine product to imply methamphetamine cannot be made with it.

Toward a vaccine for methamphetamine abuse

May 11, 2011

Scientists are reporting development of three promising formulations that could be used in a vaccine to treat methamphetamine addiction — one of the most serious drug abuse problems in the U.S. The report ...

Meds can help recovering meth addicts stay sober

Jun 14, 2012

(Medical Xpress) -- A drug shown to help break alcohol addiction can also help recovering methamphetamine addicts stay clean, a study led by University of Virginia School of Medicine researcher Dr. Bankole A. Johnson has ...

Recommended for you

Stroke damage mechanism identified

Nov 27, 2014

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.