Researcher uses micro-fabricated blood vessels to study tumor growth and anti-angiogenic cancer therapy

Researchers have established a 3-D microfluidic system to study a biological process known as endothelial sprouting. This process represents an early step in new blood vessel growth called angiogenesis.

Breakthroughs in an integrated understanding of angiogenesis will benefit researchers in broad biomedical fields, including cancer, vascular science, and tissue engineering. The reason for this interest in the cancer field is that tumors must access the host to obtain nutrients essential for growth. They do this by co-opting nearby blood vessels, causing them to sprout into and vascularize the tumor bulk in angiogenesis. The progression of the tumor results in fatal cancer.

Scott Verbridge, assistant professor in the School of Biomedical Engineering and Sciences at Virginia Tech, along with senior investigators at the Cornell University Physical Sciences-Oncology Center, developed the system using in vitro models, or living engineered tissues, with support from the National Cancer Institute's Physical Sciences in Oncology.

In the scientific community, relatively little is known about the integrated physico-chemical processes involved in angiogenesis. Blood vessel intrinsic processes can augment or inhibit cell sprouting initially driven by from the , such that drugs designed to block these tumor-derived chemical triggers may not always be effective. However tools to study these important details have been lacking.

"Angiogenesis has been extensively studied in this field and is one of the areas where innovative microenvironment-targeted therapies have actually made it to patients. However these treatments do not work nearly as well as people hoped," said Verbridge. "Developing in vitro models will help us understand the various regulators of angiogenesis, how these may influence the efficacy of current treatments, and motivate new treatment ideas."

The system uses natural tissue materials, consisting of three defined microchannels embedded in type I collagen hydrogels, designed to imitate the structural support into which new blood vessels regenerate. Two parallel side channels provide the means to create biochemical gradients that cross the endothelial cell-coated central channel.

New blood vessel sprouting transpires when gradients of vascular endothelial growth factor (VEGF) are applied across the central channel, however blood vessel geometry and density were also unexpectedly found to strongly regulate sprouting dynamics.

The results are described in a paper published in the Journal of Biomedical Materials Research Part A and highlight the importance of mechanical factors, as well as biochemical ones.

More information: onlinelibrary.wiley.com/doi/10… 002/jbm.a.34587/full

add to favorites email to friend print save as pdf

Related Stories

Protein responsible for 'bad' blood vessel growth discovered

Jul 17, 2013

The discovery of a protein that encourages blood vessel growth, and especially 'bad' blood vessels – the kind that characterise diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis – ...

Cholesterol sets off chaotic blood vessel growth

May 29, 2013

A study at the University of California, San Diego School of Medicine identified a protein that is responsible for regulating blood vessel growth by mediating the efficient removal of cholesterol from the ...

Researchers gain new insights into how tumor cells are fed

Aug 08, 2011

Philadelphia, PA, August 8, 2011 – Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply ...

Protein in blood exerts natural anti-cancer protection

Jul 02, 2013

Researchers from Thomas Jefferson University's Kimmel Cancer Center have discovered that decorin, a naturally occurring protein that circulates in the blood, acts as a potent inhibitor of tumor growth modulating the tumor ...

Recommended for you

Video: Is that double mastectomy really necessary?

Oct 24, 2014

When Angeline Vuong, 27,was diagnosed with cancer in one breast earlier this year, her first reaction was "A DOUBLE MASTECTOMY. NOW. " Turns out, she's far from alone: a recent JAMA study of 190,000 breast cancer cases in ...

User comments