Molecular switch controls the destiny of self-eating cells

July 17, 2013

The study is the result of a collaboration of scientists at Karolinska Institutet in Sweden, University of Michigan, and University of California San Diego, USA, who were interested in finding out whether autophagy can be affected by events in the cell nucleus. Surprisingly, they discovered that a signal chain in the nucleus serves as a kind of molecular switch that determines whether the cell dies or survives.

Put simply autophagy is a process whereby the cell consumes parts of itself, and is a way for it to clean up abnormal of proteins and rid itself of damaged organelles (the cell's 'organs') by breaking them down. The cell also uses the process when stressed by external circumstances, such as starvation, to keep itself alive until better times. So while autophagy can protect the cell, it can also lead to its death. However, just how the choice between life and death is controlled has remained a mystery.

Autophagy is involved in numerous diseases, such as cancer, diabetes, obesity, , chronic inflammations, Alzheimer's and Parkinson's diseases, as well as in physiological adaptation to exercise, the development of the immune system and ageing.

"Given the role of autophagy in human disease, all we have to do is select a and test whether there's anything to be gained from influencing the new signal network that we've identified," says Dr Bertrand Joseph at Karolinska Institutet's Department of Oncology-Pathology, who headed the study.

To date, autophagy has mainly been considered a process in the cell's ; the present study can completely overturn this view since the results indicate that events in the cell nucleus play an essential part in controlling the process once it has started. The DNA in the is packed around so-called histone proteins, on which different enzymes can attach acetyl groups. Such histone modification is a type of epigenetic regulation, which can influence without changing the DNA sequence. The modification of histones is a dynamic process, since some enzymes add the acetyl groups and other enzymes remove them.

The researchers studied how the outcome of the autophagy was affected by the acetylation of histone H4, and found that during the processes the acetylation of H4 decreased, which led to a reduction in the expression of autophagy-related genes. If this specific histone modification was blocked, the autophagic cells died.

"Our findings open up avenues for influencing autophagy," says Dr Joseph.

Explore further: Protein identified that can lengthen our life?

More information: DOI: 10.1038/nature12313

Related Stories

Protein identified that can lengthen our life?

February 27, 2012

Cells use various methods to break down and recycle worn-out components—autophagy is one of them. In the dissertation she will be defending at Umea University in Sweden, Karin Håberg shows that the protein SNX18 ...

Study identifies protein essential for normal heart function

June 17, 2013

A study by researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pharmacology at the University of California, San Diego, shows that a protein called MCL-1, which promotes cell survival, ...

Neuroblastoma: Autophagy protects from chemotherapy

July 1, 2013

Neuroblastomas are pediatric tumors that originate from cells of the embryonic nervous system. The disease can take widely varying clinical courses that range from spontaneous regression to fatal outcomes. Highly aggressive ...

Recommended for you

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.