MRI fast track for Alzheimer's diagnosis

July 18, 2013

A new approach to analyzing MRI brain scans could help speed up the diagnosis of Alzheimer's and other degenerative diseases, according to research published to be published in the International Journal of Computational Science and Engineering.

Clayton Chen of Taichung Veterans General Hospital, Taiwan, Shih-Yu Chen of University of Maryland, USA, and their colleagues explain how standard approaches to analyzing a (MRI) use a computer to compare pixels in the scan image so that different types of tissue can be identified. This allows to be highlighted as opposed to healthy cells, for instance. However, despite improvements in the quality and resolution of MRI scanning in recent years, each pixel in a scan may represent the presence of several different cell types. This means that differentiating between healthy and unhealthy tissue at close to the is not usually possible with inter-pixel analysis.

In progressive, , including Alzheimer's and Parkinson's diseases, the differences between healthy and diseases tissues may be very subtle, albeit the impact on the patient can be wholly debilitating. MRI has not therefore been the of choice for tracking progress in this disease or a patient's response at the cellular level to treatment.

Now, Chen and colleagues have built on earlier studies to devise what they refer to as intra-pixel analysis. Rather than comparing pixels across an MRI scan, their approach looks at the differences within individual pixels over a short period of time. This unconventional approach allows them to treat the pixels as dynamic entities and so delineate the tissues types at particular positions in the scan. In order to exploit this additional dimension in MRI, the scanner must be set to use pulse sequences so that different spectroscopic information, associated with different tissue types, is recorded over a short period of time rather than the snapshot of standard MRI.

The team explains that by "unmixing" the spectroscopic data from individual pixels they can extract more than one tissue type from the pixel and so boost the resolution and information obtained in a an MRI scan of small regions of the brain where only very subtle physical changes may have occurred between scans. The technique might allow much earlier diagnosis of degenerative brain diseases and allow doctors to make a better clinical prognosis based on the rate at which changes occur at the near to cellular level in their patient.

Explore further: New algorithm could substantially speed up MRI scans

More information:

Related Stories

New algorithm could substantially speed up MRI scans

November 1, 2011

Magnetic resonance imaging (MRI) devices can scan the inside of the body in intricate detail, allowing clinicians to spot even the earliest signs of cancer or other abnormalities. But they can be a long and uncomfortable ...

Getting the measure of MRI

February 14, 2012

(Medical Xpress) -- A method for imaging the brain that has largely been confined to neuroscience labs may now find its place as a proper tool for medical diagnosis.

New MRI method fingerprints tissues and diseases

March 13, 2013

A new method of magnetic resonance imaging (MRI) could routinely spot specific cancers, multiple sclerosis, heart disease and other maladies early, when they're most treatable, researchers at Case Western Reserve University ...

MRI Fingerprinting: the 12-second scan and a whole lot more

March 21, 2013

(Medical Xpress)—Getting an MRI can be an uncomfortable experience, particularly for a 40-minute or longer scan. In the US at least, it is also quite expensive—the same kind of scan costing just over $100 in France, for ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.