Research shows novel way in which Salmonella can resist antibiotics and antibacterial soaps

July 24, 2013

Salmonella bacteria – most frequently spread to humans by infected food – that develop a resistance to one group of antibiotics are also less susceptible to killing by other, unrelated antibiotics and a biocide used in common household items, including soap and washing up liquid, new research from the University of Birmingham has shown.

The researchers, Professor Laura Piddock and Dr Mark Webber, from the Antimicrobials Research Group at the University of Birmingham have discovered that a common mutation in Salmonella, which makes it resistant to fluoroquinolones, an important class of antibiotics, also allows survival of bacteria in the presence of other antibiotics or the biocide, triclosan. Triclosan is an antibacterial and antifungal agent found in toothpastes, and soaps.

In a paper published today, they have demonstrated that a mutation which changes DNA gyrase – the target of fluoroquinolones – in Salmonella alters the structure of bacterial DNA by changing the tightness of chromosome coiling. These changes induce stress responses, which protect the bacterium and allow survival in the presence of numerous unrelated antibiotics including .

Prof Piddock said: "This study shows that use of a common antibiotic confers fundamental changes allowing bacteria to survive exposure to several antibiotics plus an antimicrobial found in products commonly used in the home."

The study explored the effects of substituting two specific within DNA gyrase to recreate common changes seen in isolated from patients. Although both mutants were resistant to quinolone antibiotics, one substitution also resulted in a significant increase in survival when exposed to 25 other drugs. These data indicate that the nature of the mutation is important in surviving exposure to antibiotics.

The research also showed that the change in gyrase altered susceptibility to the range of antibiotics by changing supercoiling of the chromosome rather than influencing how much drug was accumulated within the bacterium or other changes to cellular metabolism including the generation of reactive oxygen species.

The study demonstrates that a common mechanism of resistance to one group of antibiotics provides protection against other types of antibiotic. This suggests that such bacteria will survive better in the presence of many antimicrobials including biocides, and gives scientists more vital information in the fight against antibiotic resistance and the development of new drugs.

Dr Webber said: "Our work has helped understand how developing antibiotic resistance can change the biology of bacteria in a profound way. Identifying the conditions which select for resistant bacteria and promote their survival will help use current drugs in better ways"

Explore further: New hypothesis: Why bacteria are becoming increasingly more resistant to antibiotics

Related Stories

Getting better without antibiotics

May 30, 2013

Given the option, many women with symptoms of urinary tract infections are choosing to avoid antibiotics and give their bodies a chance to heal naturally, finds research in BioMed Central's open access journal BMC Family ...

Antibiotics: Change route of delivery to mitigate resistance

June 26, 2013

New research suggests that the rapid rise of antibiotic resistance correlates with oral ingestion of antibiotics, raising the possibility that other routes of administration could reduce the spread of resistance. The manuscript ...

Bacteria communicate to help each other resist antibiotics

July 3, 2013

New research from Western University unravels a novel means of communication that allows bacteria such as Burkholderia cenocepacia (B. cenocepacia) to resist antibiotic treatment. B. cenocepacia is an environmental bacterium ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.