Scientists show how DHA resolves inflammation

July 1, 2013

Chronic inflammation is a major factor in a wide range of problems from arthritis to cardiovascular disease, and DHA (found in fish oil) is known to temper this problem. A new research report appearing in the July 2013 issue of The FASEB Journal, helps explain why DHA is important in reducing inflammation, and provides an important lead to finding new drugs that will help bring people back to optimal health. Specifically, researchers found that macrophages (a type of white blood cell) use DHA to produce "maresins," which serve as the "switch" that turns inflammation off and switches on resolution.

"We hope that the results from this study will enable investigators to test the relevance of the maresin pathway in human disease," said Charles N. Serhan, Ph.D., a researcher involved in the work from the Brigham & Women's Hospital and Harvard Medical School in Boston, Mass. "Moreover, we hope to better understand resolution biology and its potential pharmacology so that we can enhance our ability to control unwanted inflammation and improve the quality of life."

To make this discovery, Serhan and colleagues deconstructed the biosynthetic pathway for maresin biosynthesis and found that human macrophages are responsible for converting DHA to the novel epoxide intermediate "13S, 14S-epoxy-maresin." Then, they learned how to synthesize the molecule and found that maresins caused macrophages to change their "type" so they no longer caused inflammation (switching them from M1 to M2 phenotypes).

"We've known for a long time that DHA tames inflammation, now, we learn exactly how DHA works: via new substances called maresins," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "We encounter inflammation almost daily, but our body has ways of turning it off. This is an important step toward understanding exactly this happens. You're likely to be hearing a lot more about maresins if, or when, new therapies arise from this discovery."

Explore further: Uncovering lithium's mode of action

More information: Jesmond Dalli, Min Zhu, Nikita A. Vlasenko, Bin Deng, Jesper Z. Haeggström, Nicos A. Petasis, and Charles N. Serhan. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype. FASEB J July 2013 27:2573-2583; doi:10.1096/fj.13-227728 ; http://www.fasebj.org/content/27/7/2573.abstract

Related Stories

Uncovering lithium's mode of action

May 21, 2010

Though it has been prescribed for over 50 years to treat bipolar disorder, there are still many questions regarding exactly how lithium works. However, in a study appearing in this month's Journal of Lipid Research, researchers ...

Nothing fishy about it: Fish oil can boost the immune system

April 1, 2013

Fish oil rich in DHA and EPA is widely believed to help prevent disease by reducing inflammation, but until now, scientists were not entirely sure about its immune enhancing effects. A new report appearing in the April 2013 ...

Recommended for you

Stop the rogue ADAM gene and you stop asthma

July 21, 2016

Scientists at the University of Southampton have discovered a potential and novel way of preventing asthma at the origin of the disease, a finding that could challenge the current understanding of the condition.

Scientists reveal cellular clockwork underlying inflammation

August 27, 2015

Researchers at the Virginia Bioinformatics Institute at Virginia Tech have uncovered key cellular functions that help regulate inflammation—a discovery that could have important implications for the treatment of allergies, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.