Scientists successfully generate 'artificial bones' from umbilical cord stem cells

Scientists in Granada, Spain, have patented a new biomaterial that facilitates generating bone tissue—artificial bones in other words—from umbilical cord stem cells . The material, consisting of an activated carbon cloth support for cells that differentiate giving rise to a product that can promote bone growth, has recently been presented at a press conference at the Biomedical Research Centre, Granada.

Although the method has not yet been applied with 'in vivo' models, laboratory results are highly promising. In the future, they could help manufacture medicines for the repair of bone or osteochondrial, tumour or traumatic lesions and to replace lost cartilage in limbs. After obtaining artificial bones in the laboratory, the researchers' next step is to implant this biomaterial in experimental animal models—like rats or rabbits—to see if it can regenerate bone in them.

The scientists, from the Biomedical Research Centre and the Faculties of Sciences of the Universities of Granada and Jaén, and the Spanish National Research Council Institute of Parasitology and Biomedicine "López Neyra", have made this important scientific breakthrough after years of research in cell biology, and materials studies.

Ground-breaking, worldwide scientific advance

As the authors of the patent explain, no alternative materials are currently available on the market, nor have any been described in the literature. Precedents exist in the development of materials that fulfil the basic function of stimulating cell differentiation but a biologically complex material similar to has never before been produced "ex vivo".

What's more, the method of developed in Granada uses a three-dimensional support and facilitates obtaining cell types implicated in in cell culture conditions not requiring additional differentiation factors or factors that differ from those present in the cell culture serum. In other words, thanks to this invention, a biomaterial consisting of supported on activated carbon cloth and capable of generating a product in which osteochondrial and mineralized extracellular organic matrix lineage cells exist, can be obtained.

The patent developed in Granada could have numerous applications in stem cell use in regenerative medicine, as well as in treating bone tissue and cartilage lesion problems.

Following this important scientific finding, the researchers are confident of obtaining the finance needed to be able to continue this work and achieve the ultimate objective of their invention: to regenerate bones by implanting in patients with pathologies affecting the osseous system.

add to favorites email to friend print save as pdf

Related Stories

Study finds stem cells in deer antler

Mar 19, 2013

A team of researchers in Seoul, Korea have reported finding evidence that deer antlers - unique in that they regenerate annually - contain multipotent stem cells that could be useful for tissue regeneration in veterinary ...

Study coaxes clays to make human bone

May 31, 2013

Weak bones, broken bones, damaged bones, arthritic bones. Whether damaged by injury, disease or age, your body can't create new bone, but maybe science can. Researchers at North Dakota State University, Fargo, are making ...

Recommended for you

Growing a blood vessel in a week

11 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

14 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments