New stem cell gene therapy gives hope to prevent inherited neurological disease

Scientists from The University of Manchester have used stem cell gene therapy to treat a fatal genetic brain disease in mice for the first time.

The method was used to treat Sanfilippo – a fatal inherited condition which causes progressive in children – but could also benefit several neurological, genetic diseases.

Researchers behind the study, published in the journal Molecular Therapy this month, are now hoping to bring a treatment to trial in patients within two years.

Sanfilippo, a currently untreatable mucopolysaccharide (MPS) disease, affects one in 89,000 children in the United Kingdom, with sufferers usually dying in their mid-twenties. It is caused by the lack of SGSH enzyme in the body which helps to breakdown and recycle long chain sugars, such as heparan sulphate (HS). Children with the condition build up and store excess HS throughout their body from birth which affects their brain and results in progressive dementia and , followed by losing the ability to walk and swallow.

Dr Brian Bigger, from the University of Manchester's Institute of Human Development who led the research, said bone marrow transplants had been used to correct similar HS storage diseases, such as Hurler syndrome, by transplanting normal cells with the missing enzyme but the technique did not work with Sanfilippo disease. This is because monocytes, a type of white blood cell, from the bone marrow, did not produce enough enzyme to correct the levels in the brain.

Dr Bigger said: "To increase SGSH enzyme from , and to target it to the cells that traffic into the brain, we have developed a stem cell which overproduces the SGSH enzyme specifically in bone marrow .

"We have shown that mice treated by this method produce five times the normal SGSH enzyme levels in the bone marrow and 11 per cent of normal levels in the brain.

"The enzyme is taken up by affected and is enough to correct brain HS storage and neuro inflammation to near normal levels and completely corrects the hyperactive behaviour in mice with Sanfilippo.

"This is extremely exciting and could have huge implications for treatments. We now hope to work to a clinical trial in Manchester in 2015."

The University of Manchester team is now manufacturing a vector - a tool commonly used by molecular biologists to deliver genetic material into cells – for use in humans and hope to use this in a clinical trial with patients at Central Manchester University Hospital NHS Foundation Trust by 2015.

The stem cell gene therapy approach was recently shown by Italian scientists to improve conditions in patients with a similar genetic disease affecting the brain called metachromatic leukodystrophy, with results published in the journal Science earlier this month.

Manchester scientists refined the vector used by the Italian scientists. "This approach has the potential to treat several neurological ," Dr Bigger added.

The research was funded by the UK MPS Society and the Sanfilippo Children's Research Foundation based in Canada.

Christine Lavery MBE, Chief Executive of the UK MPS Society, said: "Since 1970 over 130 children and young adults have lost their lives to Sanfilippo disease (MPS III) in the UK alone.

"Whilst new therapies for other MPS diseases are changing children's lives, parents of children with Sanfilippo disease can do no more than give the best possible care and live in hope that a treatment is around the corner. The positive results of Dr Brian Bigger's gene therapy programme in provides optimism for future generations of Sanfilippo children."

More information: doi:10.1038/mt.2013.141

Related Stories

Recommended for you

Student seeks to improve pneumonia vaccines

10 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

12 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments