Low levels of toxic proteins linked to brain diseases, study suggests

July 2, 2013

Neurodegenerative diseases such as Alzheimer's could be better understood thanks to insight into proteins linked to such conditions, a study suggests.

Scientists studying thread-like chains of protein – called amyloid fibres – have found that low levels of these proteins may cause more harm to health than high levels.

These rarely formed protein chains, which have been linked with dozens of diseases, are produced as a result of a or changes in body chemistry brought about by ageing.

When this happens, short fibres are formed which become sticky and attract copies of themselves, forming an endless chain. These chains spontaneously break, creating more filament ends to which more proteins attach.

In the context of neurodegenerative diseases, it is these short, broken pieces that seem to be most harmful, scientists say.

Researchers have found that when are low, lots of short protein threads are formed. But when protein levels are high, this spontaneous breakage stops and most remain long.

Compared with harmful short protein fibres, long fibres do not appear to be damaging in the case of . Researchers therefore believe that high levels of the protein – which lead to these longer chains – may actually be protective.

In addition to shedding light on disease, this insight into the protein chains may help scientists develop useful biomaterials, such as cell scaffolds, which are used for tissue engineering or to make artificial silk.

Cait MacPhee, Professor of Biological Physics at the University of Edinburgh's School of Physics and Astronomy, said; "We would expect that the higher the level of toxins, the worse the disease. However, in this study we found that the lower the level of the protein, the more of these damaging short fibres we see. Understanding how these protein chains form offers us insight not only into how diseases progress, but how we can produce controlled for tissue engineering."

Explore further: Culprit implicated in neurodegenerative diseases also critical for normal cells

More information: The study is published in Nature Communications.

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.