Low levels of toxic proteins linked to brain diseases, study suggests

July 2, 2013

Neurodegenerative diseases such as Alzheimer's could be better understood thanks to insight into proteins linked to such conditions, a study suggests.

Scientists studying thread-like chains of protein – called amyloid fibres – have found that low levels of these proteins may cause more harm to health than high levels.

These rarely formed protein chains, which have been linked with dozens of diseases, are produced as a result of a or changes in body chemistry brought about by ageing.

When this happens, short fibres are formed which become sticky and attract copies of themselves, forming an endless chain. These chains spontaneously break, creating more filament ends to which more proteins attach.

In the context of neurodegenerative diseases, it is these short, broken pieces that seem to be most harmful, scientists say.

Researchers have found that when are low, lots of short protein threads are formed. But when protein levels are high, this spontaneous breakage stops and most remain long.

Compared with harmful short protein fibres, long fibres do not appear to be damaging in the case of . Researchers therefore believe that high levels of the protein – which lead to these longer chains – may actually be protective.

In addition to shedding light on disease, this insight into the protein chains may help scientists develop useful biomaterials, such as cell scaffolds, which are used for tissue engineering or to make artificial silk.

Cait MacPhee, Professor of Biological Physics at the University of Edinburgh's School of Physics and Astronomy, said; "We would expect that the higher the level of toxins, the worse the disease. However, in this study we found that the lower the level of the protein, the more of these damaging short fibres we see. Understanding how these protein chains form offers us insight not only into how diseases progress, but how we can produce controlled for tissue engineering."

Explore further: Culprit implicated in neurodegenerative diseases also critical for normal cells

More information: The study is published in Nature Communications.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.