Low levels of toxic proteins linked to brain diseases, study suggests

Neurodegenerative diseases such as Alzheimer's could be better understood thanks to insight into proteins linked to such conditions, a study suggests.

Scientists studying thread-like chains of protein – called amyloid fibres – have found that low levels of these proteins may cause more harm to health than high levels.

These rarely formed protein chains, which have been linked with dozens of diseases, are produced as a result of a or changes in body chemistry brought about by ageing.

When this happens, short fibres are formed which become sticky and attract copies of themselves, forming an endless chain. These chains spontaneously break, creating more filament ends to which more proteins attach.

In the context of neurodegenerative diseases, it is these short, broken pieces that seem to be most harmful, scientists say.

Researchers have found that when are low, lots of short protein threads are formed. But when protein levels are high, this spontaneous breakage stops and most remain long.

Compared with harmful short protein fibres, long fibres do not appear to be damaging in the case of . Researchers therefore believe that high levels of the protein – which lead to these longer chains – may actually be protective.

In addition to shedding light on disease, this insight into the protein chains may help scientists develop useful biomaterials, such as cell scaffolds, which are used for tissue engineering or to make artificial silk.

Cait MacPhee, Professor of Biological Physics at the University of Edinburgh's School of Physics and Astronomy, said; "We would expect that the higher the level of toxins, the worse the disease. However, in this study we found that the lower the level of the protein, the more of these damaging short fibres we see. Understanding how these protein chains form offers us insight not only into how diseases progress, but how we can produce controlled for tissue engineering."

More information: The study is published in Nature Communications.

add to favorites email to friend print save as pdf

Related Stories

Order from disorder

May 02, 2012

NPL and University of Leicester scientists have explored a new way of ordering proteins for materials engineering at the nanoscale, using natural biological phenomena as a guide.

Hybrid material as gold-leaf substitute

Jun 18, 2013

(Phys.org) —A team of researchers headed by Professor Raffaele Mezzenga has created a hybrid material out of gold and milk proteins that looks like a wafer-thin gold leaf. Thanks to its properties, it could ...

Recommended for you

Testing time for stem cells

11 minutes ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

19 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

23 hours ago

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments