Seeing the brain at greater depth

August 9, 2013
Figure 1: A fluorescence cross-section image of a mouse brain after treatment using the SeeDB clearing agent. Credit: 2013 Takeshi Imai et al., RIKEN Center for Developmental Biology

Brain tissue is opaque, so classical microscopy methods require slicing the brain into ultra-thin slivers to allow light to shine through. Techniques have been developed to enhance brain tissue transparency, but the chemicals used have a range of limitations. Takeshi Imai and colleagues from the Laboratory for Sensory Circuit Formation at the RIKEN Center for Developmental Biology have now developed a 'clearing' agent called SeeDB that resolves many of these limitations.

Existing brain clearing agents have a range of undesirable side-effects, such as causing the brain tissue to swell or shrink, quenching the signal of fluorescent probes used to label individual neurons, rendering the brain tissue very fragile and difficult to work with, or requiring very long incubation times to clear the brain tissue. Some of the existing methods also require special preparation methods that are prohibitive to most researchers.

Imai and his colleagues searched for a new clearing agent by testing various combinations of chemicals. The combination they found to be most effective consisted of the sugar fructose mixed with a thiol compound to prevent the tissue from turning brown or from fluorescing on its own. The researchers showed that this solution, called SeeDB (short for 'see deep brain'), could enhance the of and young mouse brains. Moreover, despite tissue having fiber tracts that cannot be cleared by other methods, SeeDB was able to render adult mouse brains completely transparent. Another advantage of the new clearing agent is its ease of preparation, which allows researchers to produce and use it in their lab.

The researchers then used SeeDB to clear brain tissue from an adult mouse containing fluorescently marked neurons. Using a standard microscope lens and brain tissue incubated in SeeDB at , they were able to view 4 millimeters into the brain. Using a custom-made microscope lens and incubated in SeeDB at body temperature, they were able to obtain images from the top to the bottom of the adult mouse brain, about 6 millimeters in depth (Fig. 1).

SeeDB will allow researchers to obtain clearer pictures of neuronal circuitry during development and disease in many species. The next challenge, notes Imai, will be to accelerate the imaging process. "With existing fluorescence microscopes, it takes a very long time—10 to 20 hours—to get images of just a part of the mouse brain," he explains. "The development of high-speed microscopes and computers for data analysis will be essential for large-scale imaging in the future."

Explore further: Sugar solution makes tissues see-through

More information: Ke, M.-T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature Neuroscience advance online publication, 23 June 2013 (DOI: 10.1038/nn.3447).

Related Stories

Sugar solution makes tissues see-through

June 23, 2013

Japanese researchers have developed a new sugar and water-based solution that turns tissues transparent in just three days, without disrupting the shape and chemical nature of the samples. Combined with fluorescence microscopy, ...

New chemical reagent turns mouse brain transparent

August 31, 2011

Japanese researchers at RIKEN have developed a ground-breaking new aqueous reagent which literally turns biological tissue transparent. Experiments using fluorescence microscopy on samples treated with the reagent, published ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.