How brain microcircuits integrate information from different senses

August 20, 2013

A new publication in the top-ranked journal Neuron sheds new light onto the unknown processes on how the brain integrates the inputs from the different senses in the complex circuits formed by molecularly distinct types of nerve cells. The work was led by new Umeå University associate professor Paolo Medini.

One of the biggest challenges in Neuroscience is to understand how the cerebral cortex of the processes and integrates the inputs from the different senses (like vision, hearing and touch) to control for example, that we can respond to an event in the environment with precise movement of our body.

The is composed by morphologically and functionally different types of nerve cells, e.g. excitatory, inhibitory, that connect in very precise ways. Paolo Medini and co-workers show that the integration of inputs from different senses in the brain occurs differently in excitatory and , as well as in superficial and in the deep layers of the cortex, the latter ones being those that send out from the cortex to other brain structures.

"The relevance and the innovation of this work is that by combining advanced techniques to visualize the functional activity of many nerve cells in the brain and new molecular genetic techniques that allows us to change the electrical activity of different cell types, we can for the first time understand how the different nerve cells composing communicate with each other", says Paolo Medini.

The new knowledge is essential to design much needed future strategies to stimulate . It is not enough to transplant nerve cells in the lesion site, as the biggest challenge is to re-create or re-activate these precise circuits made by .

Paolo Medini has a Medical background and worked in Germany at the Max Planck Institute for Medical Research of Heidelberg, as well as a Team leader at the Italian Institute of Technology in Genova, Italy. He recently started on the Associate Professor position in Cellular and Molecular Physiology at the Molecular Biology Department.

He is now leading a brand new Brain Circuits Lab with state of state-of-the-art techniques such as two-photon microscopy, optogenetics and electrophysiology to investigate the circuit functioning and repair in the brain cortex. This investment has been possible by a generous contribution from the Kempe Foundation and by the combined effort of Umeå University.

"By combining cell physiology knowledge in the intact brain with molecular biology expertise, we plan to pave the way for this kind of innovative research that is new to Umeå University and nationally", says Paolo Medini.

Explore further: Scientists watch live brain cell circuits spark and fire (w/ Video)

More information: Olcese U, Iurilli G, Medini P. "Cellular and synaptic architecture of multisensory integration in the mouse neocortex". Neuron. 2013 Aug 7;79(3): 579-593.

Related Stories

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.