Gene makes some HIV-infected patients more at risk for fungal disease

August 27, 2013

HIV-infected people who carry a gene for a specific protein face a 20-fold greater risk of contracting cryptococcal disease, according to a study published in mBio, the online open-access journal of the American Society for Microbiology.

Cryptococcus neoformans is the most common cause of among HIV-infected individuals. While the disease is a risk for everyone with HIV who has a very low level of CD4+ T cells, researchers have discovered that those with the gene for the FCGR3A 158V have an immune that binds tightly to antibody-bound C. neoformans. Perversely, this tight binding by a vigilant immune system may mean the patient's own immune system strength becomes a weakness when facing the .

"We found that this high affinity Fc receptor was very highly overrepresented in the patients that got cryptococcal disease," says corresponding author Liise-anne Pirofski of the Albert Einstein College of Medicine & Montefiore Medical Center in The Bronx, New York. Patients with two copies of the high affinity Fc receptor gene had an almost 20-fold increased risk of contracting the disease.

"It's surprising that a receptor involved with a higher capacity to bind immune complexes would be associated with susceptibility in patients with HIV," says Pirofski, since phagocytosis of immune complexes is thought of as a mechanism for fighting invading microorganisms.

Differences among Fc gamma receptors (FCGR) have already been linked to cryptococcosis susceptibility among people who are not infected with HIV, but this new information sheds light on how these receptors could influence susceptibility in HIV patients, who are at elevated risk of developing cryptococcosis and are known to have high levels of to C. neoformans. FCGRs are proteins expressed on the outsides of different kinds of immune cells, including B lymphocytes, natural killer cells, macrophages, neutrophils, and mast cells. They bind to antibodies that have grabbed onto invading pathogens, then stimulate the immune cells to destroy the invaders.

The researchers performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS), including 55 who were HIV-infected and developed cryptococcal disease, a control group of 54 who were HIV-infected and 55 who were HIV-uninfected. After correcting for a number of factors like demographics and T cell counts, they found a strong association between the gene for the high-affinity FCGR3A 158V allele and the risk of cryptococcal disease in HIV-infected men.

To figure out what that meant, they followed up with binding studies and showed that cells that express FCGR3A 158V bind more strongly to antibody-C. neoformans complexes. Greater affinity for the antibody-C. neoformans complex could increase the attachment of the fungus to monocytes or macrophages, which could in turn increase the numbers of fungi living and replicating inside immune cells. And there's also the possibility that these infected could act like a Trojan horse, delivering C. neoformans cells across the blood-brain barrier and allowing them to infect the brain. Pirofski says these possibilities are now under investigation.

C. neoformans is found all over the environment and studies show that nearly everyone is exposed to the fungus during their lifetime. However, the organism rarely causes disease in healthy people, but strikes most often in people with weakened immune systems. It is the main cause of fungal meningitis in people living with HIV, and causes devastating disease in those with profound CD4+ T cell deficiency.

But not everyone with serious T cell deficiency develops cryptococcosis, and there is currently no way of knowing which patients will develop disease. Pirofski says a test that could distinguish who is most at risk has the potential to save countless lives, particularly in sub-Saharan Africa, which is home to 69% of all people living with HIV.

"This could be the beginning of a predictive test, at least in high-risk people" says Pirofski. "I think that we're ready to study this receptor further as a risk factor for disease in larger cohorts."

Explore further: Harnessing immune cells' adaptability to design an effective HIV vaccine

Related Stories

Discovery may help prevent HIV 'reservoirs' from forming

April 17, 2013

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the protein that blocks HIV-1 from multiplying in white blood cells is regulated. HIV-1 is the virus that causes AIDS, and the discovery ...

Scientists discover how HIV kills immune cells

June 5, 2013

Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research by scientists at the National ...

Recommended for you

Targeting HIV in semen to shut down AIDS

August 18, 2015

There may be two new ways to fight AIDS—using a heat shock protein or a small molecule - to attack fibrils in semen associated with the human immunodeficiency virus (HIV) during the initial phases of infection, according ...

Vitamin D status related to immune response to HIV-1

June 15, 2015

Vitamin D plays an important part in the human immune response and deficiency can leave individuals less able to fight infections like HIV-1. Now an international team of researchers has found that high-dose vitamin D supplementation ...

Why HIV's cloak has a long tail

June 2, 2015

Virologists at Emory University School of Medicine, Yerkes National Primate Research Center, and Children's Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.