New gene repair technique promises advances in regenerative medicine

August 12, 2013

Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers from the Morgridge Institute for Research and Northwestern University have created an efficient way to target and repair defective genes.

Writing today (Monday, Aug. 12, 2013) in the Proceedings of the National Academy of Sciences, the team reports that the is much simpler than previous methods and establishes the groundwork for major advances in regenerative medicine, drug screening and biomedical research.

Zhonggang Hou of the Morgridge Institute's regenerative biology team and Yan Zhang of Northwestern University served as first authors on the study; Dr. James Thomson, director of regenerative biology at the Morgridge Institute, and Erik Sontheimer, professor of molecular biosciences at Northwestern University, served as principal investigators.

"With this system, there is the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson's and other diseases," Hou said. "The fact that it can be applied to opens the door for meaningful therapeutic applications."

Zhang said the Northwestern University team focused on Neisseria meningitidis bacteria because it is a good source of the Cas9 protein needed for precisely cleaving damaged sections of DNA.

"We are able to guide this protein with different types of small RNA molecules, allowing us to carefully remove, replace or correct problem genes," Zhang said. "This represents a step forward from other recent technologies built upon proteins such as nucleases and TALENs."

These previous gene correction methods required engineered proteins to help with the cutting. Hou said scientists can synthesize RNA for the new process in as little as one to three days – compared with the weeks or months needed to engineer suitable proteins.

Thomson, who also serves as the James Kress Professor of Embryonic Stem Cell Biology at the University of Wisconsin–Madison, a John D. MacArthur professor at UW–Madison's School of Medicine and Public Health and a professor in the department of molecular, cellular and developmental biology at the University of California, Santa Barbara, says the discovery holds many practical applications.

"Human can proliferate indefinitely and they give rise to virtually all human cell types, making them invaluable for regenerative medicine, drug screening and biomedical research," Thomson says. "Our collaboration with the Northwestern team has taken us further toward realizing the full potential of these cells because we can now manipulate their genomes in a precise, efficient manner."

Sontheimer, who serves as the Soretta and Henry Shapiro Research Professor of Molecular Biology with Northwestern's department of molecular biosciences, Center for Genetic Medicine and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, says the team's results also offer hopeful signs about the safety of the technique.

"A major concern with previous methods involved inadvertent or off-target cleaving, raising issues about the potential impact in regenerative medicine applications," he said. "Beyond overcoming the safety obstacles, the system's ease of use will make what was once considered a difficult project into a routine laboratory technique, catalyzing future research."

Explore further: Scientists analyze genetic makeup of human and mouse embryos in unprecedented detail

More information: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis ,

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.