Researchers restore immune function in spinal injured mice

August 6, 2013

In a new study, researchers at The Center for Brain and Spinal Cord Repair at The Ohio State University Wexner Medical Center show that is possible to restore immune function in spinal injured mice.

People with spinal cord injury often are immune compromised, which makes them more susceptible to infections. Why these people become immune-suppressed is not known, but the Ohio State study found that a disorder called autonomic dysreflexia can cause .

Autonomic dysreflexia is a potentially dangerous complication of high-level spinal cord injury characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes. This can cause an abrupt onset of excessively that can cause pulmonary embolism, stroke and in severe cases, death.

"Our research offers an explanation for why people with develop a condition referred to as 'central immune depression syndrome.' Their immune systems, which are required to fight off infection, are suppressed due to damage or malfunction in regions of the spinal cord that help control immune function," said principal investigator Phillip G. Popovich, Ph.D., Professor of Neuroscience in Ohio State's College of Medicine and Director of Ohio State's Center for Brain and Spinal Cord Repair.

The study is published in the Journal of Neuroscience.

Researchers found that autonomic dysreflexia develops spontaneously in spinal cord injured mice, and becomes more frequent as time passes from the initial spinal cord injury.

They also found that simple, everyday occurrences that activate normal spinal autonomic reflexes, such as having or emptying the bladder, become hyperactive and suppress immune function in people with spinal cord injury.

In the study, Popovich and colleagues were able to restore immune function in mice with spinal cord injuries using drugs that inhibit norepinephrine and glucocorticoids, immune modulatory hormones that are produced during the onset and progression of AD. They also observed in a patient with a high-level spinal cord injury that briefly inducing autonomic dysreflexia impaired immune function, confirming that their findings in mice have relevance to humans.

"Although we don't know how to fix this yet, we also show that it is possible to restore in spinal injured mice," Popovich said. "After spinal cord injury, the ability of the spinal cord to control the is impaired. As result, these individuals become susceptible to infection, and often die from these infections. For those that survive, the infections can impair what little function they have left after the injury."

The study found that autonomic dysreflexia causes immune suppression in part by releasing into blood and immune organs high levels of immune modulatory hormones that non-selectively kill mature and immature white blood cells in the spleen, said first author Yi Zhang, a post-doctoral neuroscience researcher at Ohio State.

"Our research is laying the groundwork for potential therapeutic targets for reversing central immune depression syndrome," Zhang said, adding that further research is needed.

Explore further: Irreversible tissue loss seen within 40 days of spinal cord injury

Related Stories

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.