Researchers discover how inhibitory neurons behave during critical periods of learning

August 25, 2013

We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.

For years, neuroscientists have struggled to understand how the microcircuitry of the brain makes learning easier for the young, and more difficult for the old. New findings published in the journal Nature by Carnegie Mellon University, the University of California, Los Angeles and the University of California, Irvine show how one component of the brain's —inhibitory neurons—behave during critical periods of learning. The paper is available online as an Advance Online Publication.

The brain is made up of two types of cells—inhibitory and excitatory neurons. Networks of these two kinds of neurons are responsible for processing sensory information like images, sounds and smells, and for . About 80 percent of neurons are excitatory. Traditional only allowed scientists to study the excitatory neurons.

"We knew from previous studies that excitatory cells propagate information. We also knew that inhibitory neurons played a critical role in setting up heightened plasticity in the young, but ideas about what exactly those cells were doing were controversial. Since we couldn't study the cells, we could only hypothesize how they were behaving during critical learning periods," said Sandra J. Kuhlman, assistant professor of at Carnegie Mellon and member of the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition.

The prevailing theory on inhibitory neurons was that, as they mature, they reach an increased level of activity that fosters optimal periods of learning. But as the brain ages into adulthood and the inhibitory neurons continue to mature, they become even stronger to the point where they impede learning.

Newly developed genetic and are now allowing researchers to visualize inhibitory neurons in the brain and record their activity in response to a variety of stimuli. As a postdoctoral student at UCLA in the laboratory of Associate Professor of Neurobiology Joshua T. Trachtenberg, Kuhlman and her colleagues used these new techniques to record the activity of inhibitory neurons during critical learning periods. They found that, during heightened periods of learning, the didn't fire more as had been expected. They fired much less frequently—up to half as often.

"When you're young you haven't experienced much, so your brain needs to be a sponge that soaks up all types of information. It seems that the brain turns off the inhibitory cells in order to allow this to happen," Kuhlman said. "As adults we've already learned a great number of things, so our brains don't necessarily need to soak up every piece of information. This doesn't mean that adults can't learn, it just means when they learn, their neurons need to behave differently."

Explore further: Distinct brain cells recognize novel sights

More information: Paper: http://dx.doi.org/10.1038/nature12485

Related Stories

Distinct brain cells recognize novel sights

April 11, 2012

No matter what novel objects we come to behold, our brains effortlessly take us from an initial "What's that?" to "Oh, that old thing" after a few casual encounters. In research that helps shed light on the malleability of ...

Mapping blank spots in the cheeseboard maze

March 22, 2013

(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using ...

Recommended for you

The brain clock that keeps memories ticking

May 30, 2016

Just as members of an orchestra need a conductor to stay on tempo, neurons in the brain need well-timed waves of activity to organize memories across time. In the hippocampus—the brain's memory center—temporal ordering ...

Fish courtship pheromone uses the brain's smell pathway

May 30, 2016

Research at the RIKEN Brain Science Institute in Japan has revealed that a molecule involved in fish reproduction activates the brain via the nose. The pheromone is released by female zebrafish and sensed by smell receptors ...

Effects of maternal smoking continue long after birth

May 30, 2016

Early exposure to nicotine can trigger widespread genetic changes that affect formation of connections between brain cells long after birth, a new Yale-led study has found. The finding helps explains why maternal smoking ...

Study identifies how brain connects memories across time

May 23, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time. While aging weakens these connections, the team devised a way ...

Neuroscientists illuminate role of autism-linked gene

May 25, 2016

A new study from MIT neuroscientists reveals that a gene mutation associated with autism plays a critical role in the formation and maturation of synapses—the connections that allow neurons to communicate with each other.

Teen brains facilitate recovery from traumatic memories

May 25, 2016

Unique connections in the adolescent brain make it possible to easily diminish fear memories and avoid anxiety later in life, according to a new study by Weill Cornell Medicine researchers. The findings may have important ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.