Researchers discover how inhibitory neurons behave during critical periods of learning

August 25, 2013

We've all heard the saying "you can't teach an old dog new tricks." Now neuroscientists are beginning to explain the science behind the adage.

For years, neuroscientists have struggled to understand how the microcircuitry of the brain makes learning easier for the young, and more difficult for the old. New findings published in the journal Nature by Carnegie Mellon University, the University of California, Los Angeles and the University of California, Irvine show how one component of the brain's —inhibitory neurons—behave during critical periods of learning. The paper is available online as an Advance Online Publication.

The brain is made up of two types of cells—inhibitory and excitatory neurons. Networks of these two kinds of neurons are responsible for processing sensory information like images, sounds and smells, and for . About 80 percent of neurons are excitatory. Traditional only allowed scientists to study the excitatory neurons.

"We knew from previous studies that excitatory cells propagate information. We also knew that inhibitory neurons played a critical role in setting up heightened plasticity in the young, but ideas about what exactly those cells were doing were controversial. Since we couldn't study the cells, we could only hypothesize how they were behaving during critical learning periods," said Sandra J. Kuhlman, assistant professor of at Carnegie Mellon and member of the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition.

The prevailing theory on inhibitory neurons was that, as they mature, they reach an increased level of activity that fosters optimal periods of learning. But as the brain ages into adulthood and the inhibitory neurons continue to mature, they become even stronger to the point where they impede learning.

Newly developed genetic and are now allowing researchers to visualize inhibitory neurons in the brain and record their activity in response to a variety of stimuli. As a postdoctoral student at UCLA in the laboratory of Associate Professor of Neurobiology Joshua T. Trachtenberg, Kuhlman and her colleagues used these new techniques to record the activity of inhibitory neurons during critical learning periods. They found that, during heightened periods of learning, the didn't fire more as had been expected. They fired much less frequently—up to half as often.

"When you're young you haven't experienced much, so your brain needs to be a sponge that soaks up all types of information. It seems that the brain turns off the inhibitory cells in order to allow this to happen," Kuhlman said. "As adults we've already learned a great number of things, so our brains don't necessarily need to soak up every piece of information. This doesn't mean that adults can't learn, it just means when they learn, their neurons need to behave differently."

Explore further: Distinct brain cells recognize novel sights

More information: Paper:

Related Stories

Distinct brain cells recognize novel sights

April 11, 2012

No matter what novel objects we come to behold, our brains effortlessly take us from an initial "What's that?" to "Oh, that old thing" after a few casual encounters. In research that helps shed light on the malleability of ...

Mapping blank spots in the cheeseboard maze

March 22, 2013

(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.