There's life after radiation for brain cells

August 12, 2013

Scientists have long believed that healthy brain cells, once damaged by radiation designed to kill brain tumors, cannot regenerate. But new Johns Hopkins research in mice suggests that neural stem cells, the body's source of new brain cells, are resistant to radiation, and can be roused from a hibernation-like state to reproduce and generate new cells able to migrate, replace injured cells and potentially restore lost function.

"Despite being hit hard by radiation, it turns out that are like the special forces, on standby waiting to be activated," says Alfredo Quiñones-Hinojosa, M.D., a professor of neurosurgery at the Johns Hopkins University School of Medicine and leader of a study described online today in the journal Stem Cells. "Now we might figure out how to unleash the potential of these stem cells to repair human ."

The findings, Quiñones-Hinojosa adds, may have implications not only for brain cancer patients, but also for people with progressive such as multiple sclerosis (MS) and Parkinson's disease (PD), in which cognitive functions worsen as the brain suffers permanent damage over time.

In Quiñones-Hinojosa's laboratory, the researchers examined the impact of radiation on mouse neural stem cells by testing the rodents' responses to a subsequent brain injury. To do the experiment, the researchers used a device invented and used only at Johns Hopkins that accurately simulates localized radiation used in therapy. Other techniques, the researchers say, use too much radiation to precisely mimic the clinical experience of brain cancer patients.

In the weeks after radiation, the researchers injected the mice with lysolecithin, a substance that caused brain damage by inducing a demyelinating brain lesion, much like that present in MS. They found that neural stem cells within the irradiated subventricular zone of the brain generated new cells, which rushed to the damaged site to rescue newly injured cells. A month later, the new cells had incorporated into the demyelinated area where new myelin, the protein insulation that protects nerves, was being produced.

"These mice have brain damage, but that doesn't mean it's irreparable," Quiñones-Hinojosa says. "This research is like detective work. We're putting a lot of different clues together. This is another tiny piece of the puzzle. The brain has some innate capabilities to regenerate and we hope there is a way to take advantage of them. If we can let loose this potential in humans, we may be able to help them recover from radiation therapy, strokes, brain trauma, you name it."

His findings may not be all good news, however. Neural stem cells have been linked to brain tumor development, Quiñones-Hinojosa cautions. The radiation resistance his experiments uncovered, he says, could explain why glioblastoma, the deadliest and most aggressive form of brain cancer, is so hard to treat with radiation.

Explore further: Stem cell treatment may restore cognitive function in patients with brain cancer

Related Stories

Tracking nanodiamond-tagged stem cells

August 5, 2013

A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.