Understanding mutation leads to promising new treatment for autoinflammatory diseases

(Medical Xpress)—St. Jude Children's Research Hospital scientists have not only solved the mystery of how mutations in the SHP-1 gene lead to a variety of inflammatory and autoimmune disorders, but have also identified a drug that protected against an inflammatory skin disease in a mouse model.

Researchers discovered something else: Different forms of the protein -1 (IL-1) take different routes to fuel inflammation. That finding overturned the widely held assumption that the alpha and beta versions of IL-1 work through the same pathway. The research appeared in the June 13 edition of the scientific journal Nature.

"These are thrilling results because we showed that blocking a single molecule, in this case IL-1 alpha, protected 100 percent of the mice from developing an that is very close to the human disease. These results are a stepping stone that leads to the clinic," said the study's corresponding author Thirumala-Devi Kanneganti, Ph.D., an associate member of the St. Jude Department of Immunology.

The SHP-1 protein protects against unneeded and unwanted inflammation by switching off the that governs the release of molecules called cytokines. These molecules drive inflammation. Although mutations in SHP-1 have been linked for decades to a variety of inflammatory and , including lupus and multiple sclerosis, until now the mechanism responsible was unknown.

To find the answer, researchers turned to a new SHP-1 mutant of the inflammatory human neutrophilic dermatosis. The disease is characterized by and sometimes painful skin abnormalities, including ulcers. Corticosteroids, the centerpiece of current treatment, are associated with serious side effects.

Kanneganti and her colleagues showed that SHP-1 mutations work through an unexpected mechanism. The system features the RIP1 kinase and IL-1 alpha in prominent roles. Kinases are signaling molecules that can start the inflammatory process. The scientists found the SHP-1 mutation led to signaling through RIP1, which resulted in the release of IL-1 alpha and other cytokines that promote and sustain inflammation. Deleting either RIP1 or IL-1 alpha prevented excessive inflammation and inflammation-related tissue damage in the mutant mice and restored normal wound healing.

The experimental drug necrostatin 1 also protected mutant mice from inflammation-driven tissue damage, researchers reported. The drug was designed to block RIP1 activity.

Deleting other protein complexes and cytokines that control or fuel inflammation had no impact on the inflammation or disease symptoms in the mice, said first author John Lukens, Ph.D., a postdoctoral fellow in Kanneganti's laboratory. That list included the molecules caspase 1, IL-1 beta and RIP3, which works with RIP1 to trigger a form of programed cell death that triggers inflammation.

Researchers noted that when IL-1 alpha was deleted, messaging through a protein complex called NF-kB also declined. NF-kB is a master regulator of inflammation. That observation offers further insight into the disease process, suggesting RIP1 and IL-1 alpha are in a feedback loop that fuels inflammation.

Related Stories

Novel cytokine protects mice from colitis

Aug 23, 2011

Inflammatory bowel disease (IBD), which affects more than 1 million patients in North America, results from an uncontrolled immune response triggered by environmental factors, such as bacteria, in people genetically predisposed ...

Study identifies a potential cause of Parkinson's disease

Nov 19, 2012

Deciphering what causes the brain cell degeneration of Parkinson's disease has remained a perplexing challenge for scientists. But a team led by scientists from The Scripps Research Institute (TSRI) has pinpointed ...

Recommended for you

A better biomonitor for children with asthma

Dec 10, 2014

For the firefighters and rescue workers conducting the rescue and cleanup operations at Ground Zero from September 2001 to May 2002, exposure to hazardous airborne particles led to a disturbing "WTC cough"—obstructed ...

New insight into risk of Ankylosing Spondylitis

Dec 09, 2014

Scientists at the University of Southampton have discovered variations in an enzyme belonging to the immune system that leaves individuals susceptible to Ankylosing Spondylitis.

Novel approach to treating asthma: Neutralize the trigger

Dec 03, 2014

Current asthma treatments can alleviate wheezing, coughing and other symptoms felt by millions of Americans every year, but they don't get to the root cause of the condition. Now, for the first time, scientists ...

Inflammatory discovery sheds new light on skin disease

Dec 02, 2014

Inflammatory skin diseases such as psoriasis may result from abnormal activation of cell death pathways previously believed to suppress inflammation, a surprise finding that could help to develop new ways ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.