Necrostatin-1 counteracts aluminum's neurotoxic effects

Investigators have linked aluminum accumulation in the brain as a possible contributing factor to neurodegenerative disorders such as Alzheimer's disease. A new study published in Restorative Neurology and Neuroscience sheds light on the mechanism underlying aluminum-induced neuronal cell death and identifies necrostatin-1 as a substance which counteracts several of aluminum's neurotoxic effects.

Researchers have long focused on why neurons die in degenerative diseases. One process is apoptosis, a form of gene-directed programmed cell death which removes unnecessary, aged, or damaged cells. When neurons die as a result of stroke, trauma, or other insult, the process is known as necrosis. Recently, a new type of necrosis, necroptosis (programmed necrosis), has been implicated in the cell demise process. In this report, the results of several experiments support the hypothesis that aluminum-induced is, to a large extent, due to necroptosis, says lead investigator Qinli Zhang, PhD, of the Department of Occupational Health, Ministry of Education Key Laboratory, School of Public Health of Shanxi Medical University in Taiyuan China.

For instance, when aluminum was added to mouse grown in cell culture, the cells began to die. By adding inhibitors of apoptosis (zVAD-fmk), of (3-methyladenin, 3-MA), or of necroptosis (necrostatin-1, Nec-1), investigators showed that all treatments enhanced although Nec-1 demonstrated the strongest protection. Using , in which surviving stain green, apoptotic cells stain orange, and necrotic cells stain red, the investigators demonstrated Al-induced cell death as well as dose-dependent reduction of necroptosis with Nec-1.

When aluminum was injected into the cerebral ventricles of living mice, analysis revealed shrunken and abnormal-looking neurons. When Nec-1 was injected simultaneously with aluminum into the ventricles, more surviving neurons could be seen, especially when higher doses of Nec-1 were used. When the investigators measured cell death-related proteins in the brain, a marker protein of necroptosis known as RIP1 showed the most changes, compared to marker proteins of apoptosis or autophagy. Similar findings were found for Alzheimer-related proteins: aluminum exposure increased the expression of mGluR2, mGluR5, A?, and Tau levels while Nec-1 treatment resulted in dose-dependent reductions of these protein levels.

Noting that "progressive cell loss in specific neuronal populations associated with typical learning and memory dysfunction is a pathological hallmark of neurodegenerative disorders, especially in AD," principal investigator Qiao Niu, MD, PhD, Director, Department of Occupational Health and Director, Institute of Preventive Medicine, Shanxi Medical University, and the team evaluated learning and memory in mice using the Morris Water Maze test. Al-treated mice performed poorly on the test and performance significantly improved if the mice were treated with Nec-1. Interestingly, if Nec-1 treatment was delayed for 2, 4, or 8 hours after the aluminum was introduced, Nec-1 had a protective effect less than simultaneous administration. Impaired cognitive performance was also correlated with reduced mGluR2 and mGluR5 protein in the cortex. "Nec-1, in addition to its use as a therapeutic agent for cell death, might therefore be of use in slowing the progression of the cognitive deficits associated with neuronal degeneration," says Dr. Niu.

The study demonstrates that Nec-1 may be useful for future prevention of and therapy for neurodegenerative disorders.

More information: Qinli, Z. et al. Necrostatin-1 inhibits the degeneration of neural cells induced by aluminum exposure, Restorative Neurology and Neuroscience, DOI: 10.3233/RNN-120304.

Related Stories

Neuronal activity induces tau release from healthy neurons

Feb 15, 2013

Researchers from King's College London have discovered that neuronal activity can stimulate tau release from healthy neurons in the absence of cell death. The results published by Diane Hanger and her colleagues in EMBO re ...

For a healthy brain, don't let the trash pile up

Jul 21, 2013

Recycling is not only good for the environment, it's good for the brain. A study using rat cells indicates that quickly clearing out defective proteins in the brain may prevent loss of brain cells.

Recommended for you

Damage to brain networks affects stroke recovery

Nov 21, 2014

(Medical Xpress)—Initial results of an innovative study may significantly change how some patients are evaluated after a stroke, according to researchers at Washington University School of Medicine in St. ...

Dopamine leaves its mark in brain scans

Nov 21, 2014

Researchers use functional magnetic resonance imaging (fMRI) to identify which areas of the brain are active during specific tasks. The method reveals areas of the brain, in which energy use and hence oxygen ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.