Negative feedback stabilizes memories

August 28, 2013
Excitatory (E) neurons hold the memory. If their activity begins to slip, fast negative feedback (red) mediated by inhibitory (I) neurons can correct this slip before slower positive feedback loops (blue) bring the circuit back into balance. Credit: UC Davis graphic

(Medical Xpress)—Memories may be maintained in the brain through a mechanism familiar to any engineer—negative and positive feedback loops, according to researchers Sukbin Lim and Mark Goldman at the UC Davis Center for Neuroscience.

The work was published Aug. 18 in the journal Nature Neuroscience.

"The puzzle out there is: How do retain a memory without it slipping?" said Associate Professor Goldman. "For example, if you store a memory of the color yellow, why doesn't it slip over time into orange?"

Earlier models used positive feedback to maintain memories. The idea is that, if a memory starts to fade, the circuit gets a boost.

"The problem with positive feedback is that, without some additional mechanism, it's brittle—the system doesn't respond well to being perturbed," said Goldman, who also holds joint appointments in the Department of Neurobiology, Physiology and Behavior within the College of Biological Sciences, and the Department of Ophthalmology and Vision Science within the School of Medicine.

Goldman and Lim, a postdoctoral researcher, thought that these brain circuits might instead be doing something an engineer would do—stabilizing a system with . For example, a thermostat uses negative feedback to turn on heating or cooling depending on whether a room's temperature drifts below or above a set point.

The researchers built mathematical models to simulate the kinds of found in the cortex of the brain. Neurons are connected to each other through junctions that transmit either positive (excitatory) or negative (inhibitory) signals.

The modeling studies show that negative feedback can stabilize these circuits and allow them to store memories. What's more, the models show that these circuits should be robust to perturbations such as death of individual cells.

"Biological systems tend to be robust, so we wanted our models to reflect this robustness," Goldman said. The models also reflect key features of the circuitry observed in the brain's neocortex, he said.

Lim and Goldman further showed how positive feedback and negative feedback could work together in the same circuit, demonstrating how the brain may exploit multiple mechanisms to store memories.

Explore further: Good or bad: Surprises drive learning in same neural circuits

More information: Balanced cortical microcircuitry for maintaining information in working memory, DOI: 10.1038/nn.3492

Related Stories

Good or bad: Surprises drive learning in same neural circuits

December 6, 2011

Primates learn from feedback that surprises them, and in a recent investigation of how that happens, neurosurgeons have learned something new. The insight they gleaned from examining the response of specific brain tissues ...

Recommended for you

Closing the loop with optogenetics

August 28, 2015

An engineering example of closed-loop control is a simple thermostat used to maintain a steady temperature in the home. Without it, heating or air conditioning would run without reacting to changes in outside conditions, ...

Self-control saps memory, study says

August 26, 2015

You're driving on a busy road and you intend to switch lanes when you suddenly realize that there's a car in your blind spot. You have to put a stop to your lane change—and quickly.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.