Scientists find way to predict and control gene expression

by Laure-Anne Pessina
Credit: Photos.com

(Medical Xpress)—EPFL scientists have developed a "guide" that can be used to precisely predict the number of proteins a given gene will produce under varying conditions. This work will help biologists to engineer cells.

Genes are segments of DNA within our cells that oversee how our bodies take shape. They receive orders to produce specific proteins; these proteins become the building blocks of everything in our body, from organs to the in our . Our genes are thus at the very center of who we are.

The processes at work in producing proteins from genes, also called , are extremely complex and depend on many different factors that are all interconnected. Proteins affect genes, which in turn affect proteins, and biologists don't yet fully understand just how it all works and what controls the system.

EPFL graduate students Arun Rajkumar and Nicolas Denervaud, together with the researcher Sebastian Maerkl recently shed some light on these processes. They developed a guide to gene expression that shows how the amount of proteins produced can be controlled. The results of the study have been published in Nature Genetics.

Genes aren't simply switched "on" or "off"

Each gene has a segment of DNA at its beginning called a promoter, which plays a key role in making proteins. When the promoter is activated, it produces a molecule called mRNA, which then becomes a protein. But genes genes aren't simply turned "on" or "off", and the amount of proteins that they produce can vary. Researchers in the Maerkl lab have developed a model that accounts for all the variations that can occur between "on" and "off."

More like a dimmer switch than an on/off button

The team worked with , which serve as a for many processes occurring in . They generated 209 different promoters and integrated them into the . They then placed the 209 yeast strains in a microfluidic device and used fluorescence-based methods to determine the number of proteins produced form each of the 209 synthetic promoters. "Our in vivo results lined up with what we'd already seen in vitro. That meant we could develop a computational model that predicts the level of gene expression on the basis of in vitro data". Concretely, this work represents a "gene-expression instruction manual" that predicts how different promoter structures can give rise to varying amounts of protein. "We show that promoter output can be precisely tuned with just one or two changes to the promoter, a bit like a on a lamp that allows one to set any light level," says Professor Maerkl.

Are custom-engineered cells on the horizon?

Professor Maerkl's work, which could be applicable to all yeast promoters, represents an important breakthrough because it provides insight into biological processes that will advance our ability to engineer cells. "We're only just beginning to understand the phenomena involved here," says Professor Maerkl, "but the work is promising. If we can understand the biology better we should be able to artificially engineer better-performing cells - cells that are optimal for producing biofuels or antimalarial drugs, for example."

The paper is titled "Mapping the fine structure of a eukaryotic promoter input-output function."

More information: www.nature.com/ng/journal/vaop… nt/full/ng.2729.html

Related Stories

Recommended for you

Scientists discover an on/off switch for aging cells

9 hours ago

(Medical Xpress)—Scientists at the Salk Institute have discovered an on-and-off "switch" in cells that may hold the key to healthy aging. This switch points to a way to encourage healthy cells to keep dividing ...

Gene variant that dramatically reduces 'bad' lipids

Sep 16, 2014

In the first study to emerge from the UK10K Project's cohort of samples from the general public, scientists have identified a rare genetic variant that dramatically reduces levels of certain types of lipids in the blood. ...

New diagnostic method identifies genetic diseases

Sep 16, 2014

People with genetic diseases often have to embark on an odyssey from one doctor to the next. Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. Scientists ...

User comments