Team creates cells that line blood vessels

by Joseph Caputo

In a scientific first, Harvard Stem Cell Institute scientists have successfully grown the cells that line the blood vessels—called vascular endothelial cells—from human induced pluripotent stem cells (iPSCs), revealing new details about how these cells function. Using a unique approach, the researchers induced the differentiation of specific cell types by generating mechanical forces on the surface of the iPSC-derived endothelium mimicking the flow of blood. For example, cells that felt a stronger "flow" became artery cells, while those that felt a weaker "flow" became vein cells.

"It was especially exciting to us to discover that these cells are basically responding to biomechanical cues," research leader Guillermo García-Cardena, PhD, an HSCI Affiliated Faculty member, said. "By exposing cells to 'atheroprone flow,' we can direct differentiation of these cells into cells that are present in areas of the circulatory system that we know are affected by diseases like atherosclerosis." García-Cardena is now working on modeling the formation of arterial plaques using human iPSC-derived vascular endothelial cells and identifying potential drugs that might prevent .

García-Cardena's team, which included Harvard School of Engineering and Applied Sciences graduate student William Adams, found that the iPS-derived display three critical functions carried out by mature endothelium in the body: mounting , keeping blood from leaking out of the blood vessel, and preventing blood clots.

Based on this information, García-Cardena's work, published this month in the journal Stem Cell Reports, has another exciting implication—it could potentially reduce, or even eliminate the need for heparin use during and lung failure treatment—making both markedly safer.

Traditionally, patients undergoing dialysis are treated with heparin, a powerful drug, which prevents the blood from clotting as it's routed through the dialysis machine. While heparin is quite effective in preventing clotting, because it considerably thins the blood, it can also cause loss of blood, internal bleeding, and interfere with the healing process.

"The iPSC-derived endothelial cells cells beautifully function as an anticoagulant surface," said García-Cardena, an Associate Professor of Pathology at Harvard Medical School and Brigham and Women's Hospital. "In the future, we may take a tissue sample from a patient, generate iPSCs, and then cover an extracorporeal device with the patient's own endothelial cells—so the patient can go home with the device without the need for regular heparin shots."

More information: Functional Vascular Endothelium Derived from Human Induced Pluripotent Stem Cells. Stem Cell Reports. August 6, 2013

Related Stories

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

14 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

19 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

20 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.