Researchers uncover brain molecule regulating human emotion, mood

August 6, 2013
A RIKEN research team has discovered an enzyme called Rines that regulates MAO-A, a major brain protein controlling emotion and mood. The enzyme is a potentially promising drug target for treating diseases associated with emotions such as depression. Credit: RIKEN

A RIKEN research team has discovered an enzyme called Rines that regulates MAO-A, a major brain protein controlling emotion and mood. The enzyme is a potentially promising drug target for treating diseases associated with emotions such as depression.

Monoamine oxidase A (MAO-A) is an enzyme that breaks down serotonin, norephinephrine and dopamine, neurotransmitters well-known for their influence on emotion and mood. Nicknamed the "warrior gene", a variant of the MAOA gene has been associated with increased risk of violent and anti-social behavior.

While evidence points to a link between MAO-A levels and various emotional patterns, however, the mechanism controlling MAO-A levels in the brain has remained unknown.

Now, a research team headed by Jun Aruga at the RIKEN Brain Science Institute has shown for the first time that a ligase named Rines (RING finger-type E3 ubiquitin ligase) regulates these levels. Their research shows that mice without the Rines gene exhibit impaired stress responses and enhanced anxiety, controlled in part through the regulation of MAO-A levels. The study is published today in Journal of Neuroscience.

A RIKEN research team has discovered an enzyme called Rines that regulates MAO-A, a major brain protein controlling emotion and mood. The enzyme is a potentially promising drug target for treating diseases associated with emotions such as depression. Credit: RIKEN

As the first study to demonstrate regulation of MAO-A protein via the ubiquitin proteasomal system, this research presents a promising new avenue for analyzing the role of MAO-A in brain function. Further research promises insights into the treatment of anxiety, stress-related disorders and impaired social functions.

Explore further: Fear factor: Missing brain enzyme leads to abnormal levels of fear in mice

More information: Kabayama et al. Rines E3 Ubiquitin Ligase Regulates MAO-A Levels and Emotional Responses, Journal of Neuroscience, 2013 DOI:10.1523/JNEUROSCI.5717-12.2013

Related Stories

Recommended for you

Scientists develop new drug screening tool for dystonia

December 8, 2016

Duke University researchers have identified a common mechanism underlying separate forms of dystonia, a family of brain disorders that cause involuntary, debilitating and often painful movements, including twists and turns ...

Transplanted interneurons can help reduce fear in mice

December 8, 2016

The expression "once bitten, twice shy" is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists ...

Honeybee memories: Another piece of the Alzheimer's puzzle?

December 8, 2016

A breakdown of memory processes in humans can lead to conditions such as Alzheimer's and dementia. By looking at the simpler brain of a honeybee, new research published in Frontiers in Molecular Neuroscience, moves us a step ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.