Amino acid with promising anti-diabetic effects

September 9, 2013
Amino acid with promising anti-diabetic effects

New experiments conducted by researchers from the University of Copenhagen show that the amino acid arginine – found in a wide variety of foods such as salmon, eggs and nuts – greatly improves the body's ability to metabolise glucose. Arginine stimulates a hormone linked to the treatment of type 2 diabetes, and works just as well as several established drugs on the market. The research findings have just been published in the scientific journal Endocrinology.

More than 371 million people worldwide suffer from , of whom 90% are affected by lifestyle-related 2 (type 2 diabetes).

In new experiments, researchers from the University of Copenhagen working in collaboration with a research group at the University of Cincinnati, USA, have demonstrated that the amino acid arginine improves glucose metabolism significantly in both lean (insulin-sensitive) and obese (insulin-resistant) mice.

"In fact, the amino acid is just as effective as several well-established drugs for type 2 diabetics," says postdoc Christoffer Clemmensen. He has conducted the new experiments based at Faculty of Health and Medical Sciences, University of Copenhagen. He is currently conducting research at the Institute for Diabetes and Obesity at Helmholtz Zentrum München, the German Research Centre for Environmental Health in Munich.

To test the effect of the amino acid arginine, researchers subjected lean and obese animal models to a so-called glucose tolerance test, which measures the body's ability to remove glucose from the blood over time.

"We have demonstrated that both lean and fat benefit considerably from arginine supplements. In fact, we improved glucose metabolism by as much as 40% in both groups. We can also see that arginine increases the body's production of -like peptide-1 (GLP-1), an intestinal hormone which plays an important role in regulating appetite and glucose metabolism, and which is therefore used in numerous drugs for treating type 2 diabetes," says Christoffer Clemmensen, and continues:

"You cannot, of course, cure diabetes by eating unlimited quantities of arginine-rich almonds and hazelnuts. However, our findings indicate that diet-based interventions with arginine-containing foods can have a positive effect on how the body processes the food we eat."

The research findings were recently published in the American scientific journal Endocrinology under the heading Oral l-arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice.

Hormone plays key role

Researchers have known for many years that the amino acid arginine is important for the body's ability to secrete insulin. However, the latest findings show that it is an indirect process. The process is actually controlled by arginine's ability to secrete the intestinal hormone GLP-1, which subsequently affects insulin secretion.

"Mice without GLP-1 receptors are not affected to the same extent by arginine. There is no perceptible improvement in or insulin secretion, confirming our hypothesis of a close biological connection between GLP-1 and arginine," says Christoffer Clemmensen, who conducted the biological experiments in the USA using a special where the receptor for GLP-1 is genetically inactivated.

The new findings provide optimism for better and more targeted drugs for treating ; the outlook is long-term, but promising.

"This exciting result has raised several new questions which we want to investigate. Can other do what arginine does? Which intestinal mechanisms 'measure' arginine and lead to the release of GLP-1? Finally, there is the more long-term perspective – the question of whether the findings can be transferred from mice to humans and be used to design drugs that will benefit diabetes patients," says Professor Hans Bräuner-Osborne, who is continuing work on the project in the research group at the Department of Drug Design and Pharmacology at the University of Copenhagen.

Explore further: Research reveals hormone action that could lead to treatments for type 2 diabetes

Related Stories

Bile acid sequestrant reduces glucose concentration in T2DM

January 30, 2013

(HealthDay)—For patients with type 2 diabetes taking metformin monotherapy, the bile acid sequestrant colesevelam reduces fasting and postprandial glucose concentrations without any effects on insulin concentration, secretion, ...

DNA variant affects diabetes risk and treatment response

May 17, 2013

A DNA variant near a digestive enzyme does not only affect risk of developing diabetes but also affects the response to treatment, an international consortium of researchers including the University of Dundee has found.

Insulin secretion disrupted by increased fatty acids

September 9, 2013

Patients with type 2 diabetes have increased levels of circulating glucose and fatty acids, which lead to disease complications. In healthy individuals, β cells within pancreatic islets release insulin in response to glucose ...

Recommended for you

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.