Study unlocks origin of brown fat cells important in weight maintenance

In ongoing research aimed at battling obesity, UT Southwestern Medical Center researchers have deciphered how new fat cells are formed in energy-storing fat pads.

In particular, researchers sought to find out the origin of "brown" fat cells and whether humans can make more of them in order to burn extra calories – a finding that could have significant impact in battling obesity and related diseases.

"Much of the current excitement in the obesity field stems from recent observations highlighting that, even as adults, we have the ability to generate cells in response to . Unlike cells that mostly just store fat, brown adipocytes keep us warm by burning fat at a high rate," said Dr. Philipp Scherer, Director of the Touchstone Center for Diabetes Research at UT Southwestern and senior author of the study available online at Nature Medicine.

While generation of brown fat cells previously was thought to be mostly relevant for rodents and human infants, Dr. Scherer said, current evidence points to the observation that adults also generate these cells when exposed to cold.

Brown fat cells in adults tend to be randomly interspersed in subcutaneous white fat, with a trend toward increased accumulation in the upper chest and neck areas. In general, brown fat tissue makes up just a small percentage of total body fat mass.

The Touchstone Center's staff devotes its efforts to the study of cells and tissues that either contribute to, or are affected by, diabetes and its related diseases, including the physiology of fat tissue. In this study, the UT Southwestern research team examined the timing and nature of changes in fat cell composition in response to weight gain, cold exposure, and development. Genetic tools developed at the medical center over the past eight years were used to label all pre-existing fat cells. Researchers then were able to track where new fat cells emerged.

When mice were exposed to high-fat diets, significant differences between the types of white fat deposits were observed – subcutaneous fat deposits took their existing fat cells and made them bigger, while other deposits were more prone to generating new fat cells. Brown fat cells did not form during this experiment, nor during a test that monitored early growth-related development. Only when exposed to cold did new brown fat cells appear.

"The major finding is that the cold-induced adaptation and appearance of brown fat cells involves the generation of completely new cells rather than a retooling of pre-existing white fat cells into brown fat cells in response to the cold," Dr. Scherer said.

The researchers next hope to translate these findings into clinical use, with future efforts directed toward therapeutic strategies to activate precursor cells to become new brown fat cells rather than to convert white fat cells into brown .

Related Stories

Some fat cells can feel the cold

Jul 02, 2013

(Medical Xpress)—To survive in cold environments, mammals burn fat to produce heat. The breakdown of fat helps prevent obesity and related metabolic diseases, such as diabetes. Bruce Spiegelman and his colleagues at Harvard ...

Scientists develop a new way to identify good fat

Sep 18, 2013

When it comes to fat, you want the brown type and not so much of the white variety because brown fat burns energy to keep you warm and metabolically active, while white fat stores excess energy around your ...

Conversion from bad fat to good fat

Apr 28, 2013

Scientists from ETH Zurich in Switzerland have shown for the first time that brown and white fat cells in a living organism can be converted from one cell type to the other. Their work, using mice as a model organism, provides ...

Recommended for you

The impact of bacteria in our guts

22 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

22 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

23 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments