Hereditary spastic paraplegia development associated with changes in endoplasmic reticulum

September 24, 2013

Hereditary spastic paraplegias (HSP) are a group of hereditary diseases that result in progressive loss of motor function in the lower limbs, and mutations in many different genes have been implicated in disease progression. One common feature of HSP is the progressive degradation of the axons of cortical motor neurons; however, it is not fully understood how mutations in is so many different genes result in axonal degradation.

In this issue of the Journal of Clinical Investigation, Christian Hübner and colleagues at Jena University develop a mouse model of HSP by introducing a human-associated mutation into the gene encoding receptor accessory protein 1 (REEP1). Mice with this Reep1 mutation exhibited age-dependent loss of motor function and axonal degradation in the spinal cord.

The authors revealed a role for REEP1 in maintaining the shape of the endoplasmic reticulum (ER) and changes in ER structure associated with Reep1 mutations might impair ER function.

In the companion commentary, Ariel Deutch and colleagues at Vanderbilt University discuss how this new will be useful for understanding the how changes in ER morphology result in HSP-associated axon loss.

Explore further: From nerve roots to plant roots -- research on hereditary spastic paraplegia yields surprises

More information: A spastic paraplegia mouse model reveals REEP1-dependent ER shaping, J Clin Invest. 2013;123(10):4273–4282. DOI: 10.1172/JCI65665
REEPing the benefits of an animal model of hereditary spastic paraplegia, J Clin Invest. 2013;123(10):4134–4136. DOI: 10.1172/JCI72324

Related Stories

Study offers new clues about hereditary spastic paraplegia

July 8, 2011

(Medical Xpress) -- New research from Rice University and Italy's Eugenio Medea Scientific Institute is yielding clues about hereditary spastic paraplegia (HSP), a group of inherited neurological disorders that affect about ...

Gene required for nerve regeneration identified

November 1, 2012

A gene that is associated with regeneration of injured nerve cells has been identified by scientists at Penn State University and Duke University. The team, led by Melissa Rolls, an assistant professor of biochemistry and ...

Recommended for you

Solving the mystery of meningiomas reveals a surprise twist

August 23, 2016

In solving one mystery—the genetic roots of benign brain tumors called meningiomas—a team of scientists led by Yale researchers stumbled upon an even greater one: How is it possible that two of the mutations linked to ...

Two key proteins preserve vital genetic information

August 22, 2016

Cancer is often driven by various genetic mutations that are acquired through changes to a person's DNA over time. These alterations can occur at the chromosome level if the proteins are not properly organized and segregated ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.