New insights into control of neuronal circuitry could lead to treatments for an inherited motor disorder

September 20, 2013
Figure 1: Mouse Purkinje cells lacking IP3R1 display a higher density and longer length of dendritic spines (right) compared with normal mice (left). Credit: Ref. 1 © 2013 T. Sugawara et al.

The cerebellum is a region of the brain critical for balance, learning of motor skills and coordination of movements. In the outer layer of the cerebellum, individual 'Purkinje' cells integrate inputs from the brain stem and hundreds of thousands of granule cells to produce the cerebellar 'output'. Maintenance of the connections between Purkinje cells and associated parallel fibers is critical for proper cerebellar function, but very little is known about the underlying molecular mechanisms.

A team of researchers led by Katsuhiko Mikoshiba from the RIKEN Brain Science Institute in Wako has now identified a signaling molecule responsible for maintaining the integrity of these in the mature .

The type 1 inositol trisphosphate receptor (IP3R1) is known to be expressed at high levels in Purkinje cells. Mutations in the IP3R1 gene lead to uncoordinated movements, abnormal Purkinje cell structure and impaired signaling between Purkinje cells and parallel fibers in mice, and cause a human disease called spinocerebellar ataxia 15 (SCA15). Mikoshiba and his colleagues investigated the role of IP3R1 in the mature cerebellum by genetically engineering mice specifically lacking the receptor in their Purkinje cells.

The researchers found that the displayed impaired motor skill learning and severely uncoordinated movements, or ataxia, as seen in patients with SCA15. Closer examination of the cerebellum under the microscope also revealed abnormalities in the mice's Purkinje cells. While appearing to develop normally, in the adult animals these cells showed a dramatic increase in the density and length of their dendritic spines—the tiny finger-like protuberances that form connections with other cells (Fig. 1). All of the spines, however, formed fully functional connections with parallel fibers in the adult animals.

Previously, Mikoshiba's group showed that IP3R1 plays a critical role in a process called synaptic plasticity, by which connections between neurons are strengthened or weakened during learning. These new findings show that the receptor is also required for maintaining the proper spatial arrangement of connections in the adult cerebellum.

"Mice lacking IP3R1 specifically in Purkinje cells display ataxia similar to SCA15 patients," says Mikoshiba. He notes that since the abnormal maintenance of Purkinje cell appears to be associated with severe ataxia in the mutant mice, defects in the maintenance of the cerebellar circuit might similarly be involved in SCA15 pathogenesis.

"We are now studying the precise mechanism of how IP3R1 regulates Purkinje cell spine maintenance. This may elucidate SCA15 pathogenesis and lead to the development of new therapies," adds Mikoshiba.

Explore further: Unexpected discovery reveals a new mechanism for how the cerebellum extracts signal from noise

More information: Sugawara, T., et al.Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice, The Journal of Neuroscience 33, 12186–12196 (2013)

Related Stories

Newly understood circuits add finesse to nerve signals

May 27, 2013

(Medical Xpress)—An unusual kind of circuit fine-tunes the brain's control over movement and incoming sensory information, and without relying on conventional nerve pathways, according to a study published this week in ...

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.