Insulin secretion disrupted by increased fatty acids

Patients with type 2 diabetes have increased levels of circulating glucose and fatty acids, which lead to disease complications. In healthy individuals, β cells within pancreatic islets release insulin in response to glucose and incretins, which are gastrointestinal hormones. Coordination between β cells is predicted to be important for insulin release.

In this issue of the Journal of Clinical Investigation, David Hodson and colleagues at Imperial College London demonstrate that ? cell-? cell interactions are important for in human islets and that these interactions are regulated by incretins. The authors found that increased fatty acid levels suppressed incretin-associated insulin release.

These findings indicate that therapies aimed at maintaining ? cell connectivity may be useful for restoring glucose balance in type 2 diabetes.

More information: Lipotoxicity disrupts incretin-regulated human ? cell connectivity, J Clin Invest. DOI: 10.1172/JCI68459

Abstract
Pancreatic ? cell dysfunction is pathognomonic of type 2 diabetes mellitus (T2DM) and is driven by environmental and genetic factors. ? cell responses to glucose and to incretins such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are altered in the disease state. While rodent ? cells act as a coordinated syncytium to drive insulin release, this property is unexplored in human islets. In situ imaging approaches were therefore used to monitor in real time the islet dynamics underlying hormone release. We found that GLP-1 and GIP recruit a highly coordinated subnetwork of ? cells that are targeted by lipotoxicity to suppress insulin secretion. Donor BMI was negatively correlated with subpopulation responses to GLP-1, suggesting that this action of incretin contributes to functional ? cell mass in vivo. Conversely, exposure of mice to a high-fat diet unveiled a role for incretin in maintaining coordinated islet activity, supporting the existence of species-specific strategies to maintain normoglycemia. These findings demonstrate that ? cell connectedness is an inherent property of human islets that is likely to influence incretin-potentiated insulin secretion and may be perturbed by diabetogenic insults to disrupt glucose homeostasis in humans.

add to favorites email to friend print save as pdf

Related Stories

Absolute incretin effect reduced in type 2 diabetes

Jun 25, 2012

(HealthDay) -- For patients with type 2 diabetes mellitus (T2DM) the absolute incretin effect is reduced compared with healthy individuals, but its relative importance is increased, particularly in first-phase ...

Fractalkine: New protein target for controlling diabetes

Apr 11, 2013

Researchers at the University of California, San Diego School of Medicine have identified a previously unknown biological mechanism involved in the regulation of pancreatic islet beta cells, whose role is to produce and release ...

Recommended for you

Monitoring the rise and fall of the microbiome

2 hours ago

Trillions of bacteria live in each person's digestive tract. Scientists believe that some of these bacteria help digest food and stave off harmful infections, but their role in human health is not well understood.

Antioxidant biomaterial promotes healing

10 hours ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

12 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

User comments