Misread heart muscle gene a new clue to risk of sudden cardiac death

September 16, 2013

(Medical Xpress)—Scientists have discovered that a drug which increases the risk of sudden cardiac death interacts with mistranslated protein-coding genes present in heart muscle.

The cardiac drug flecainide was developed to prevent and treat serious arrhythmias in the ventricles - the main pumps of the heart. These cause very rapid which can be lethal if unchecked. However in clinical trials, flecainide, and its sister molecule encainide, were reported to more than double the risk of .

Joint work by researchers in the Department of Chemistry and Warwick Medical School at the University of Warwick, and at the SEEK drug discovery groupthrough subsidiary Tangent Reprofiling Limited, is now allowing insight into how cardiac might be increased by these drugs. The method involves persuading viruses to provide a read-out on their surface of proteins related to human heart disease.

Genes that code for proteins, including those from the heart, may be read differently to normal - by starting at a different "letter" in the genetic code - these are called alternative reading frame (ARF) proteins, a bit like a very simple old cipher.

In experiments just published in the Royal Society of Chemistry journal Chemical Communications, the researchers show that flecainide appears to interact with just such an ARF protein, the "normal" version of which is crucial to . This opens the way to further research that may illuminate the positive and negative elements of flecainide's action.

Paul Taylor, Associate Professor in Organic Chemistry, commented "Genes provide the code for cells to make proteins. This new research indicates that flecainide is able to interact with an unexpected translation of the gene coding for the protein - myosin regulatory light chain - a crucial component in the contraction of fibres."

Associate Professor of Chemistry Andrew Marsh added "The work is particularly important as it represents a new way to uncover interactions of drugs such as flecainide with ARF proteins. The fuller biomedical significance of these unusual, 'mistranslated' proteins is only just becoming recognised."

Dr Suzanne Dilly, Head of Chemical Biology at SEEK, said " I am delighted to see publication of these important results, which were enabled by sharing of expertise and technology between an excellent academic team and our drug discovery group."

Professor of Clinical Pharmacology and Therapeutics Donald Singer said "Adverse effects of drugs can be very serious. Our work shows an unexpected consequence of adverse effects of a drug: providing clues to new causes for disease and new ideas for treatments. There is clear potential to apply these methods to understanding unexplained risks of other medicines".

Explore further: Computer model for testing heart-disease drugs developed

More information: Taylor, P. et al. A Chemical Genomics Approach to Identification of Interactions between Bioactive Molecules and Alternative Reading Frame Proteins, Chem. Commun., 2013. DOI: 10.1039/C3CC44647F

Related Stories

Discovery could improve screening for sudden cardiac death

December 12, 2012

Unfortunately, newspaper articles about young athletes dying suddenly on the field are not unheard of. Such reports fuel discussions about compulsory screening, for example of young footballers, for heart failure. Research ...

Study identifies protein essential for normal heart function

June 17, 2013

A study by researchers at Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pharmacology at the University of California, San Diego, shows that a protein called MCL-1, which promotes cell survival, ...

MS drug shows promise for preventing heart failure

July 16, 2013

A drug already approved to treat multiple sclerosis may also hold promise for treating cardiac hypertrophy, or thickening of the cardiac muscle—a disorder that often leads to heart failure, researchers at the University ...

Recommended for you

Heart attack treatment hypothesis 'busted'

July 6, 2015

Researchers have long had reason to hope that blocking the flow of calcium into the mitochondria of heart and brain cells could be one way to prevent damage caused by heart attacks and strokes. But in a study of mice engineered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.