Mosquito bites deliver potential new malaria vaccine

Mosquito bites deliver potential new malaria vaccine
Feeding mosquitoes.

This study suggests that genetically engineered malaria parasites that are stunted through precise gene deletions (genetically attenuated parasites, or "GAP") could be used as a vaccine that protects against malaria infection. This means that the harmless (attenuated) version of the parasite would interact with the body in the same way as the infective version, but without possibility of causing disease. GAP-vaccination would induce robust immune responses that protect against future infection with malaria.

According to the World Health Organization, there were 219 million documented cases of malaria in 2010, causing the deaths of up to 1.2 million people worldwide. Antimalarial treatments are available to reduce the risk of infection, but as yet there is no effective vaccine against the disease.

Last month, a team of scientists announced the results of a trial with a new kind of , a whole-parasite preparation weakened by radiation. The trial showed promising results, but the method of vaccination was not optimal, requiring intravenous administration and multiple high doses. This current paper outlines a method of attenuation through genetic engineering rather than radiation, which offers hope for a more consistent vaccine that gives better protection.

"Malaria is one of the world's biggest killers, and threatens 40 percent of the world's population, yet still no effective vaccine exists," said Stefan Kappe, Ph.D., lead author of the paper and professor at Seattle BioMed. "In this paper we show that genetically engineered parasites are a promising, viable option for developing a malaria vaccine, and we are currently engineering the next generation of attenuated parasite strains with the aim to enter clinical studies soon."

For the first time, researchers created a weakened version of the human by altering its DNA. They tested the safety of the new modified parasite by injecting six human volunteers through . Five of the six volunteers showed no infection with the parasite, suggesting that the new genetic technique has potential as the basis for a malaria vaccine.

"Our approach offers a new path to make a protective malaria vaccine that might overcome the limitations of previous development attempts. Genetically engineered parasites potentially provide us with a potent, scalable approach to malaria vaccination," said Kappe. "Our results are very encouraging, providing a strong rationale for the further development of live-attenuated strains using genetic engineering."

More information: Kappe, S. et al. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers, Vaccine.

add to favorites email to friend print save as pdf

Related Stories

Australian researchers close in on malaria vaccine

Jul 02, 2013

Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.

Recommended for you

Determine patient preferences by means of conjoint analysis

23 hours ago

The Conjoint Analysis (CA) method is in principle suitable to find out which preferences patients have regarding treatment goals. However, to widely use it in health economic evaluations, some (primarily methodological) issues ...

FDA approves hard-to-abuse narcotic painkiller

Jul 25, 2014

(HealthDay)—A new formulation of a powerful narcotic painkiller that discourages potential abusers from snorting or injecting the drug has been approved by the U.S. Food and Drug Administration.

Race affects opioid selection for cancer pain

Jul 25, 2014

(HealthDay)—Racial disparities exist in the type of opioid prescribed for cancer pain, according to a study published online July 21 in the Journal of Clinical Oncology.

FDA approves tough-to-abuse formulation of oxycodone

Jul 25, 2014

(HealthDay)—Targiniq ER (oxycodone hydrochloride and naloxone hydrochloride extended release) has been approved by the U.S. Food and Drug Administration as a long-term, around-the-clock treatment for severe ...

User comments