New mouse model for hepatitis C

September 19, 2013 by Catherine Zandonella

Hepatitis C affects about three million people in the U.S. and is a leading cause of chronic liver disease, so creating a vaccine and new treatments is an important public health goal. Most research to date has been done in chimpanzees because they are one of a handful of species that become infected and spread the virus.

Now researchers led by Alexander Ploss of Princeton University and Charles Rice of the Rockefeller University have generated a mouse that can become infected with hepatitis C virus (HCV). They reported the advance in the Sept 12 issue of the journal Nature. "The entire life cycle of the virus—from infection of to , assembly of new particles, and release from the infected cell—occurs in these mice," said Ploss, who joined the Princeton faculty in July 2013 as assistant professor of molecular biology.

Ploss and his colleagues have been working for some time on the challenge of creating a small animal model for studying the disease. Four years ago, while at the Rockefeller University in New York, Ploss and Rice identified two human proteins, known as CD81 and occludin, that enable to become infected with HCV (Nature 2009). In a follow up study Ploss and colleagues showed that a mouse engineered to express these human proteins could become infected with HCV, although the animals could not spread the virus (Nature 2011).

In the present study, which included colleagues at Osaka University and the Scripps Research Institute, the researchers bred the human-protein-containing mice with another strain that had a defective immune system – one that could not easily rid the body of viruses. The resulting mice not only become infected, but could potentially pass the virus to other susceptible mice.

The availability of this new way to study HCV could help researchers discover new vaccines and treatments, although Ploss cautioned that more work needs to be done to refine the model.

Explore further: Discovery could lead to a new animal model for hepatitis C

More information: Dorner, M. et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice, Nature 501, 237–241, 31 July 2013. DOI: 10.1038/nature12427.

Related Stories

Discovery could lead to a new animal model for hepatitis C

January 28, 2009

During its career, the potentially fatal hepatitis C virus has banked its success on a rather unusual strategy: its limitations. Its inability to infect animals other than humans and chimpanzees has severely hampered scientists ...

A new opportunity for hepatitis C research

July 6, 2010

The hepatitis C virus is highly specialised. We humans are its natural hosts. The only other living organisms that could be infected with the hepatitis C virus in the lab are chimpanzees. Nevertheless it is - from the viewpoint ...

New focus to combat rising liver disease

July 26, 2013

University of Adelaide researchers are investigating how the liver responds to hepatitis C virus (HCV) and why some people can control the virus while others can't. The aim is to find better therapies to combat hepatitis ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.