Nanoscale neuronal activity measured for the first time

A new technique that allows scientists to measure the electrical activity in the communication junctions of the nervous systems has been developed by a researcher at Queen Mary University of London.

The junctions in the central nervous systems that enable the information to flow between neurons, known as synapses, are around 100 times smaller than the width of a human hair (one micrometer and less) and as such are difficult to target let alone measure.

By applying a high-resolution that allows three-dimensional visualisation of the structures, the team were able to measure and record the flow of current in small synaptic terminals for the first time.

"We replaced the conventional low-resolution optical system with a high-resolution microscope based on a nanopipette," said Dr Pavel Novak, a bioengineering specialist from Queen Mary's School of Engineering and Materials Science.

"The nanopipette hovers above the surface of the sample and scans the structure to reveal its three-dimensional topography. The same nanopipette then attaches to the surface at selected locations on the structure to record electrical activity. By repeating the same procedure for different locations of the we can obtain a three-dimensional map of its electrical properties and activity."

The research, published today in Neuron, opens a new window into the at nanometre scale, and may contribute to the wider effort of understanding the function of the brain represented by the Brain Activity Map Project (BRAIN initiative), which aims to map the function of each individual neuron in the .

The research also involves scientists from University College London and Imperial College London.

Related Stories

Capturing brain activity with sculpted light

date Sep 09, 2013

Scientists at the Campus Vienna Biocenter (Austria) have found a way to overcome some of the limitations of light microscopy. Applying the new technique, they can record the activity of a worm's brain with ...

A new tool for brain research

date Jul 31, 2013

Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance ...

Mathematicians help to unlock brain function

date May 02, 2013

(Phys.org) —Mathematicians from Queen Mary, University of London will bring researchers one-step closer to understanding how the structure of the brain relates to its function in two recently published ...

Recommended for you

Men and women could use different cells to process pain

date 14 hours ago

We have known for some time that there are sex differences when it comes to experiencing pain, with women showing a higher sensitivity to painful events compared to men. While we don't really understand w ...

Pupillary reflex enhanced by light inside blind spot

date 15 hours ago

University of Tokyo researchers have found that the light reflex of the pupil is modulated by light stimulation inside the blind spot in normal human observers, even though that light is not perceived.

How your brain knows it's summer

date Jun 29, 2015

Researchers led by Toru Takumi at the RIKEN Brain Science Institute in Japan have discovered a key mechanism underlying how animals keep track of the seasons. The study, published in Proceedings of the Na ...

His and her pain circuitry in the spinal cord

date Jun 29, 2015

New research released today in Nature Neuroscience reveals for the first time that pain is processed in male and female mice using different cells. These findings have far-reaching implications for our ba ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.